Advertisement

Kongreß pp 151-166 | Cite as

Wirkungsmechanismus des Insulins

  • H. Reinauer
Conference paper
Part of the Verhandlungen der Deutschen Gesellschaft für Innere Medizin book series (VDGINNERE, volume 93)

Zusammenfassung

Anläßlich des 50jährigen Jubiläums der Insulinentdeckung stellte Levine (1972) folgende Arbeitshypothesen über den Insulinwirkungsmechanismus auf (Abb. 1):
  1. 1.

    Für die Insulinwirkung muß ein Membraneffekt und ein zusätzlicher intrazellulärer Effekt angenommen werden.

     
  2. 2.

    Insulin senkt den cyclo-AMP-Spiegel in der ZHelle, wodurch ein Teil seiner Wirkung erklärt werden kann.

     
  3. 3.

    Insulin wirkt durch Bindung an einen spezifischen Rezeptor in der Zellmembrane (Levine 1965; Cuatrecasas 1969).

     
  4. 4.

    In der Zelle wird ein kleines Molekül als „second messenger“ gebildet.

     
  5. 5.

    Der „second messenger“ wirkt auf die anabolen Prozesse in der Zelle.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Arsenis G, Livingston JN (1986) Alterations in the tyrosine kinase activity of the insulin receptor produced by in vitro hyperinsulinemia. J Biol Chem 261: 147–153PubMedGoogle Scholar
  2. 2.
    Berridge MJ (1984) Inositol trisphosphat and diacylglycerol as second messengers. Biochem J 220: 345–360PubMedGoogle Scholar
  3. 3.
    Berson SA, Yalow RS (1970) Insulin „antagonists” and insulin resistance. In: Ellenberg M, Rifkin H (eds) Diabetes mellitus: Theory and Practice. MacGraw-Hill, New YOrk, pp 388–423Google Scholar
  4. 4.
    Carpenter G, King jr L, Cohen S (1979) Rapid enhancement of protein phosphorylation in A-431 cell membrane preparations by epidermal growth factor. J Biol Chem 254: 4884–4891PubMedGoogle Scholar
  5. 5.
    Cheng K, Larner J (1985) Intracellular mediators of insulin action. Am Rev Physiol 47: 405–424CrossRefGoogle Scholar
  6. 6.
    Cohen S, Carpenter G, King jr L (1986) Epidermal growth factor-receptor-protein kinase interactions. J Biol Chem 255: 4834–4842Google Scholar
  7. 7.
    Cuatrescasas P (1969) Interaction of insulin with cell membran: The primary action of insulin. Proc Natl Acad Sci USA 63: 450–457CrossRefGoogle Scholar
  8. 8.
    Czech MP (1984) New perspectives on the mechanism of insulin action. Recent Prog Horm Res 40: 347–377PubMedGoogle Scholar
  9. 9.
    De Meyts P (1976) Cooperative properties of hormone receptors in cell membranes. J Supramol Struct 4: 241–258PubMedCrossRefGoogle Scholar
  10. 10.
    De Meyts P, Roth J (1975) Cooperativity in ligand binding: a new graphical analysis. Biochem Biophys Res Commun 66: 1118–1126PubMedCrossRefGoogle Scholar
  11. 11.
    Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E, Ou J-H, Masiarz F, Kan YW, Goldfine ID, Roth RA, Rutter WJ (1985) The human insulin receptor cDNA: The structural basis for hormone-activated transmembrane signalling. Cell 40: 747–758PubMedCrossRefGoogle Scholar
  12. 12.
    Farese RV (1983) The phosphatidate-phosphoinositide cycle: an intracellular messenger system in the action of hormones and neurotransmitters. Metabolism 32: 628–641PubMedCrossRefGoogle Scholar
  13. 13.
    Farese RV, Davis JS, Barnes DE, Standaert ML, Babischkin JS, Hock R, Rosic N-K, Polett RJ (1985) The de novo phospholipid effect insulin is associated with increases in diacylglycerol, but not inositolphosphates or cytosolic Ca2+. Biochem J 231: 269–278PubMedGoogle Scholar
  14. 14.
    Filetti S, Takai NA, Rapoport B (1981) Insulin receptor down-regulation: prevention at a post-receptor site. Endocrinology 108: 2409–2411PubMedCrossRefGoogle Scholar
  15. 15.
    Flier JS, Kahn CR, Jarrett DB, Roth J (1976) Characterization of antibodies to the insulin receptor: A cause of insulin-resistant diabetes in man. J Clin Invest 58: 1442–1449PubMedCrossRefGoogle Scholar
  16. 16.
    Freidenberg GR, Klein HH, Cordera R, Olefsky JM (1985) Receptor kinase activity in rat liver. Regulation by fasting and high carbohydrate feeding. J Biol Chem 260: 12444–12453PubMedGoogle Scholar
  17. 17.
    Freychet P, Roth J, Neville jr DM (1971) Monoiodoinsulin: demonstration of its biological activity and binding to fat cells and liver membranes. Biochem Biophys Res Commun 43: 400–408PubMedCrossRefGoogle Scholar
  18. 18.
    Fujita-Yamaguchi Y, Choi S, Sakomoto Y, Itakura K (1983) Insulin receptor highly purified from human placenta. J Biol Chem 258: 5045–5049PubMedGoogle Scholar
  19. 19.
    Gammeltoft S, Van Obberghen E (1986) Protein kinase activity of the insulin receptor. Biochem J 235: 1–11PubMedGoogle Scholar
  20. 20.
    Gavin JR III, Roth J, Neville jr DM, De Meyts P, Buell DN (1974) Insulin-dependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. Proc Natl Acad Sci USA 71: 84–88PubMedCrossRefGoogle Scholar
  21. 21.
    GrigorescuF,Flier JS, Kahn CR (1984) Defect in insulin receptor phosphorylation in erythrocytes and fibroblasts associated with severe insulin resistance. J Biol Chem 259: 15003–15006Google Scholar
  22. 22.
    Häring H, Kirsch D, Obermaier B, ErmelB, Machicao F (1986) Decreased tyrosine kinase activity of insulin receptor isolated from rat adipocytes rendered insulin-resistant by catecholamine treatment in vitro. Biochem J 234: 59–66Google Scholar
  23. 23.
    Hamlin JL, Arquilla ER (1974) Monoiodoinsulin: preparation, purification, and characterization of an biologically active derivative substituted predominantly on tyrosine A14. J Biol Chem 249: 21–32PubMedGoogle Scholar
  24. 24.
    Harrison LC, Flier JS, Itin A, Kahn CR, Roth J (1979) Radioimmunoassay of the insulin receptor: new probe of receptor strueture and funetion. Science 203: 544–547PubMedCrossRefGoogle Scholar
  25. 25.
    Heldin CH, Westermark B (1984) Growth factors: mechanism of action and relation to oncogenes. Cell 37: 9–20PubMedCrossRefGoogle Scholar
  26. 26.
    Hepp R, Meyer HE, Peters F, Paßlack W, Reinauer H (1983) The influence of tracers on insulin binding to human erythrocytes. J Clin Chem Clin Biochem 21: 829–833PubMedGoogle Scholar
  27. 27.
    Hunter T, Cooper JA (1985) Protein-tyrosine kinases. Ann Rev Biochem 54: 897–930PubMedCrossRefGoogle Scholar
  28. 28.
    Kadowaki T, KasugaM, Akamura Y, Ezaki D, Takaku F (1984) Decreased autophosphorylation of the insulin receptor kinase in streptocotocin-diabetic rats. J Biol chem 259: 14208–14216Google Scholar
  29. 29.
    Kahn CR (1978) Insulin resistance, insulin sensitivity and insulin unresponsiveness: a necessary distinetion. Metabolism 27: 1893–1902PubMedCrossRefGoogle Scholar
  30. 30.
    Kahn CR (1985) The molekular mechanism of insulin action. Ann Rev Med 36: 429–451PubMedCrossRefGoogle Scholar
  31. 31.
    Kahn CR, Freychet P, Roth J, Neville jr DM (1974) Quantitative aspects of the insulin-receptor interaction in liver plasma membranes. J Biol Chem 249: 2249–2257PubMedGoogle Scholar
  32. 32.
    Kasuga M, Akanuma Y, Tsushima I, Iwamoto Y, Kosaka K, Kibata M, Kawanishi K (1978) Effects of anti-insulin receptor autoantibodies on the metabolism of human adicytes. Diabetes 27: 938–945PubMedCrossRefGoogle Scholar
  33. 33.
    Kasuag M, Zick Y, Blith DL, Karlsson FA, Häring HU (1982) Insulin Stimulation of phosphorylation of the ß-subunit of the insulin receptor. J Biol Chem 257: 9891–9894Google Scholar
  34. 34.
    Kosmakos FC, Roth J (1980) Insulin-induced loss of the insulin receptor in IM-9 lyphocytes. J Biol Chem 255: 9860–9869PubMedGoogle Scholar
  35. 35.
    Lang U, Kahn CR, Harrison LC (1980) Subunit strueture of the insulin receptor of the human lymphocyte. Biochemistry 19: 64–70PubMedCrossRefGoogle Scholar
  36. 36.
    Levine R (1965) Cell membrane as a primary site of insulin action. Fed Rpoc 24: 1071–1073Google Scholar
  37. 37.
    Levine R (1972) Action of insulin: An attempt at a summary. In: Fritz IF (ed) 50th Anniversary Insulin Symposion, Indianapolis, Academic Press, New YorkGoogle Scholar
  38. 38.
    Macaulay SL, Macaulay JO, Jarrett L (1985) Insulin stimulates generation of intracellular mediators in rat heart. Arch Biochem Biophys 241: 432–437PubMedCrossRefGoogle Scholar
  39. 39.
    Marshall S (1985) Kinetics of insulin receptor internalization and recycling in adipocytes. J Biol Chem 260: 4136–4155PubMedGoogle Scholar
  40. 40.
    Perrotti N, Grunberger G, Richert ND, Taylor SI (1986) Immunological similarity between the insulin receptor and the protein encoded by the sre oncogene. Endocrinology 118: 2349–2354PubMedCrossRefGoogle Scholar
  41. 41.
    Pilch PF, Czech MP (1980) The subunit strueture of the high affinity insulin receptor: evidence for a disulfide-linked receptor complex in fat cell and liver plasma membranes. J Biol Chem 255: 1722–1731PubMedGoogle Scholar
  42. 42.
    Roth J, Taylor SI (1982) Receptor for peptide hormones: alterations in diseases of humans. Ann Rev Physiol 44: 639–651CrossRefGoogle Scholar
  43. 43.
    Roth RA, Cassell DJ (1983) Insulin receptor: evidence that it is a protein kinase. Science 219: 299–301PubMedCrossRefGoogle Scholar
  44. 44.
    Roth RA, Mesirow ML, Cassell DJ (1983) Preferential degradation of the ß-subunit of purified insulin receptor: effect of insulin binding and protein kinase activities of the receptor. J Biol chem 258: 14456–14460PubMedGoogle Scholar
  45. 45.
    Sale GJ, Fujita-Yamaguchi Y, Kahn CR (1986) Characterization of phosphatidylinositol kinase activity associated with the insulin receptor. Eur J Biochem 155: 345–351PubMedCrossRefGoogle Scholar
  46. 46.
    Saltiel AR, Cuatrecasas P (1986) Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Proc Natl Acad Sci USA 83: 5793–5797PubMedCrossRefGoogle Scholar
  47. 47.
    Saltiel AR, Fox JA, Sherline P, Cuatresasas P (1986) Insulin-stimulated hydrolysis of a novel glycolipid generates modulators of cAMP Phosphodiesterase. Science 233: 967–972PubMedCrossRefGoogle Scholar
  48. 48.
    Scatchard G (1949) The attraction of proteins for small molecules and ions. Ann NY Acad Sci 51: 660–672CrossRefGoogle Scholar
  49. 49.
    Schlüter KJ, Petersen KG, Burmeister P, Koop L (1982) In: Petersen KG, Schlüter KJ, Kerp L (eds) Neue Insuline 1. Internat. Symposium. Freiburger Graphische Betriebe, pp 118–124Google Scholar
  50. 50.
    Skyler JS (1979) The spectrum of insulin resistance. Diabetes Care 3: 319–322Google Scholar
  51. 51.
    Stadtmauer L, Rosen OM (1986) Increasing the cAMP content of IM-9 cells alters the phosphorylation State and protein kinase activity of the insulin receptor. J Biol Chem 261: 3402–3407PubMedGoogle Scholar
  52. 52.
    Taylor D, Uhing RJ, Blackmore PF, Prpic V, Exton JH (1985) Insulin and epidermal growth factor do not affect phosphoinositide metabolism in rat liver plasma membranes and hepatocytes. J Biol Chem 260: 2011–2014PubMedGoogle Scholar
  53. 53.
    Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ, Gray A, Cussens L, Liao Y-C, Tsubokawa M, Mason A, Seeburg PH, Grunfeld C, Rosen OM, Ramachandran J (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313: 756–761PubMedCrossRefGoogle Scholar
  54. 54.
    Wasner KH (1975) Regulation of protein kinase and phosphoprotein phosphatase by cyclic AMP and cyclic AMP antagonist. FEBS Lett 57: 60–63PubMedCrossRefGoogle Scholar
  55. 55.
    Wasner HK (1980) Cyclic AMP antagonist-the hormone messenger of insulin. Acta Endocrinol Stoffwechsel 1: 207–208Google Scholar
  56. 56.
    Wasner HK (1985) Prostaglandylinositol cyclic phosphate. An antagonist to cyclic AMP. In: Bailey JM (ed) Prostaglandins, Leukotrienes, and Lipoxins. Plenum Publ. Corp., pp 251–257Google Scholar
  57. 57.
    Yip CC, Yeung CWT, Moule ML (1978) Photoaffinity labelling of insulin receptor of rat adipocyte plasma membrane. J Biol Chem 253: 1743–1745PubMedGoogle Scholar

Copyright information

© J. F. Bergmann Verlag, München 1987

Authors and Affiliations

  • H. Reinauer
    • 1
  1. 1.Diabetes-ForschungsinstitutUniversität DüsseldorfDeutschland

Personalised recommendations