Kongreß pp 132-136 | Cite as

Identification of peptidergic nervous control of gastrointestinal functions

  • J. J. Holst
Conference paper
Part of the Verhandlungen der Deutschen Gesellschaft für Innere Medizin book series (VDGINNERE, volume 93)


The last 10–12 years of research have revealed that the entire gastrointestinal tract has a dense innvervation of peptidergic nerves, i.e. nerves that contain neuropeptides [2]. However, the precise physiological role of the neuropeptides has proven very difficult to define. An additional problem was presented by the recent identification of co-existing transmitters in the gastrointestinal nerve fibres. Thus acetylcholine has been demonstrated to co-exist with peptides; amines (noradrenaline, dopamine) with peptides, and neuropeptides with other neuropeptides [15].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argent B, Arkle S (1984) Biochemical studies on pancreatic ducts isolated from copper-deficient rats. J Physiol 354: 90 PGoogle Scholar
  2. 2.
    Costa M, Furness J (1986) Anatomy of the enteric nervous system. In: Johnson LR (ed) Physiology of gastrointestinal tract, 2nd edn. Raven Press, New York, chapter 1Google Scholar
  3. 3.
    Ekblad E, Edvinsson L, Wahlestedt C, Uddman R, Häkanson R, Sundler F (1984) Neuro-peptide Y coexists and cooperates with noradrenaline in perivascular nerve fibres. Regulatory peptides 8: 225–235PubMedCrossRefGoogle Scholar
  4. 4.
    Fahrenkrug J, Gammeltoft S, Staun-Olsen P, Ottesen B, Sjoquist A (1983) Multiplicity of receptors for vasoactive intestinal polypeptide (VIP): Differential effects of apamin on binding in brain, uterus and liver. Peptides 4: 133–136Google Scholar
  5. 5.
    Folsch UR, Fischer H, Soling H-D, Creutzfeldt W (1980) Effects of gastrointestinal hormones and carbamylcholine on cAMP accumulation in isolated pancreatic duct fragments from the rat. Digestion 20: 277–292PubMedCrossRefGoogle Scholar
  6. 6.
    Gardner JD, Jensen JT (1986) Receptors mediating the actions of secretagogues on pancreatic acinar cells. In: Go VLW, et al. (eds) The exocrine pancreas: biology, pathobiology, and diseases. Raven Press, New York, pp 109–122Google Scholar
  7. 7.
    Host JJ, Fahrenkrug J, Knuhtsen S, Jensen SL, Seier Poulsen, Vagn Nielsen O (1984) Vasoactive Intestinal Polypeptide (VIP) in the pig pancreas: role of VI Pergic nerves in control of fluid and bicarbonate secretion. Regulatory Peptides 8: 245–259CrossRefGoogle Scholar
  8. 8.
    Holst JJ, Fahrenkrug J, Knuhtsen S, Jensen SL, Nielsen OV, Lundberg JM, Hokfelt T (1987) VIP and PHI in the pig pancreas: coexistence, corelease, and cooperative effects. Am J Physiol 252: G182–G187PubMedGoogle Scholar
  9. 9.
    Holst JJ, Knuhtsen S, Orskov C, Skak-Nielsen T, Poulsen SS, Jensen SL, Vagn Nielsen O (1987) GRP-nerves in the pig antrum: Role of GRP in vagal control of gastrin secretion. Am J Physiol, in pressGoogle Scholar
  10. 10.
    Holst JJ, Knuhtsen S, Orskov C, Skak-Nielsen T, Poulsen SS, Vagn Nielsen O (1987) GRP-producing nerves control antral somatostatin and gastrin secretion in pigs. Am J Physiol, in pressGoogle Scholar
  11. 11.
    Holst JJ, Jensen SL, Knuhtsen S, Nielsen OV (1983) Autonomie nervous control of pancreatic somatostatin secretion. Am J Physiol 245: E542–E548PubMedGoogle Scholar
  12. 12.
    Jensen RT, Jones SW, Folkers K, Gardner JD (1984) A synthetic peptide that is a bombesin reeeptor antagonist. Nature 309: 61–63PubMedCrossRefGoogle Scholar
  13. 13.
    Knuhtsen S, Holst JJ, Jensen SL, Knigge U, Vagn Nielsen O (1985) Gastrin-releasing peptide: effect on exocrine secretion and release from isolated perfused porcine pancreas. Am J Physiol 248: G281–G286PubMedGoogle Scholar
  14. 14.
    Knuhtsen S, Holst JJ, Baidissera FGA, Skak-Nielsen T, Poulsen SS, Jensen SL, Vagn Nielsen OV (1987) Gastrin-Releasing Peptide in the porcine pancreas. Gastroenterology 92: 1153–1158PubMedGoogle Scholar
  15. 15.
    Lundberg JM, Hokfelt T (1983) Coexistence of peptides and classical neurotransmitters. Trends in Neurosciences 6: 325–333CrossRefGoogle Scholar
  16. 16.
    Mage MG (1980) Preparation of Fab fragments from IgGs of different animal species. Methods of Enzymology 70: 142–150CrossRefGoogle Scholar
  17. 17.
    McLennan H (1963) Synaptic transmission. Saunders, Philadelphia London, pp 16–24Google Scholar
  18. 18.
    Richelsen B, Rehfeld JF, Larsson L-I (1983) Antral gland cell column: a method for studying release of gastric hormones. Am J Physiol 245: G463–469PubMedGoogle Scholar
  19. 19.
    Schwartz TW, Stenquist B, Olbe L (1979) Cephalic phase of pancreatic polypeptide secretion studied by sham feeding in man. Scand J Gastroenterol 14: 313–320PubMedCrossRefGoogle Scholar
  20. 20.
    Schubert ML, Saffouri B, Walsh JH, Makhlouf G (1985) Inhibition of neurally mediated gastrin secretion by bombesin antiserum. Am J Physiol 248: G456–G462PubMedGoogle Scholar
  21. 21.
    Vigna SR, Giraud A, Soll AH, Walsh JH (1986) Characterization of bombesin receptors on canine antral mucosal cells. Can J Physiol Pharmacol July 1986: 4Google Scholar
  22. 22.
    Waelbroeck M, Robberecht P, Coy DH, Camus J-C, de Neef P, Christophe J (1985) Interaction of growth hormone-releasing factor (GRF) and 14 GRF analogs with vasoactive intestinal peptide (VIP) receptors of rat pancreas. Discovery of (N-Ac-Tyr1,D-Phe2)-GRF-(1–29)-NH2 as a VIP antagonist. Endocrinology 116: 2643–2649PubMedCrossRefGoogle Scholar

Copyright information

© J. F. Bergmann Verlag, München 1987

Authors and Affiliations

  • J. J. Holst
    • 1
  1. 1.Institute of Medical Physiology C, the Panum InstituteUniversity of CopenhagenGermany

Personalised recommendations