2,8-Dihydroxyadenine Lithiasis — Epidemiology, Pathogenesis and Therapy

  • H. A. Simmonds
Conference paper
Part of the Verhandlungen der Deutschen Gesellschaft für Innere Medizin book series (VDGINNERE, volume 92)


2,8-dihydroxyadenine (2,8-DHA) is the insoluble purine responsible for a potentially lethal form of kidney stones, previously mistaken for uric acid in non-specific routine tests. Unlike uric acid the stones crush easily and do not react with uricase. The biochemical basis for 2,8-DHA lithiasis, a complete deficiency of the enzyme adenine phosphoribosyltransferase (APRT), has been found in 29 subjects from 11 countries, 20% of whom have been totally asymptomatic. An equal number presented in acute renal failure, 3 of whom are now on dialysis. Formation of 2,8 DHA can be prevented by allopurinol. This underlines the importance of early diagnosis, since such severe renal damage should be preventable. The number of stone-formers in Japan (10 homozygotes, 16 heterozygotes) Austria (3), and Switzerland (2) suggests more efficient diagnosis in those countries. Heterozygotes are normally asymptomatic. The defective enzyme in heterozygote stone-formers in Japan is a kinetic mutant demonstrable only in intact cells. The incidence of heterozygosity is approximately 1%, suggesting homozygosity may be more prevalent than is recognised. Whether juvenile gout may also be an accompaniment of partial APRT deficiency remains to be proven.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simmonds HA, Van Acker KJ (1983) Adenine phosphoribosyltransferase deficiency: 2,8-Dihy -droxadenine lithiasis. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds). The Metabolic Basis of Inherited Disease, 5th edn. McGraw-Hill, New York, p 1144–1156Google Scholar
  2. 2.
    Vabusek M (1976) Prevention of urinary calculi in hyperuricaemia and gout. In: Fleisch H, Robertson WG, Smith LG, Vahlensiek W (eds). Urolithiasis research. Plenum Press, New York, p 565–569CrossRefGoogle Scholar
  3. 3.
    Nobori T, Yamanaka H, Kamatani N, Nishioka K, Mikanagi K (1985) The prevalence of metabolic disorders in Japan. Ped Res 19:767 .Google Scholar
  4. 4.
    Fujimori S, Akaoka I, Sakamoto K, Yamanaka H, Nishioka K, Kamatani N (1985) Common characteristics of mutant adenine phosphoribosyltransferase from four separate Japanese families with 2,8-dihydroxyadenine urolithiasis associated with partial enzyme deficiencies. Hum Genet 71:171–176 .PubMedCrossRefGoogle Scholar
  5. 5.
    Greenwood MC, Dillon MJ, Simmonds HA, Barratt TM, Pincott JR, Metreweli C (1982) Renal Failure due to 2,8-dihydroxyadenine urolithiasis. Eur J Pediatr 138:346–349 .PubMedCrossRefGoogle Scholar
  6. 6.
    Chevet D,Le Pogamp P, Gie S, Gary J, Daudon M, Hamet M (1984) 2,8-dihydroxyadenine (2,8-DHA) urolithiasis in an adult -complete adenine phosphoribosyltransferase deficiency -family study. Kidney International 26:226Google Scholar
  7. 7.
    Witten FR, Morgan JE, Foster JG, Gleen JF (1983) 2,8-dihydroxyadenine urolithiasis: review of the literature and report of a case in the United States. J Urol 130:938–942 .PubMedGoogle Scholar
  8. 8.
    Asper R, Schmucki O (1982) Diagnostik und therapie der 2,8-dihydroxyadenine-lithiasis. In: Gasser G, Vahlensieck W (eds) Pathogenese und Klinik der Harnsteine 1X, Steinkopff, Darmstadt, p 274–282 .Google Scholar
  9. 9.
    Christensen E, Brandt NJ, Laxdal T (1985) Adenine phosphoribosyltransferase deficiency: a case diagnosed by GC-MS identification of 2,8 dihydroxyadenine in urinary crystals. J Inher Met Dis 8 (suppl 2): 94 .CrossRefGoogle Scholar
  10. 10.
    Labhart A. Zurich 1985 (personal communication) .Google Scholar
  11. 11.
    Muller MM, Vienna 1985 (personal communication) .Google Scholar
  12. 12.
    Joost J, Innsbruck 1985 (personal communication) .Google Scholar
  13. 13.
    Szonyi P, Bereni M, Toth J (1985) A rare enzyme deficiency causing formation of 2,8 -dihydroxyadenine (purine body) calculi. Internat Urol Nephrol 17:231–234.CrossRefGoogle Scholar
  14. 14.
    Morris GS, Simmonds HA (1985) Use of a fundamental elution protocol for the development of a reverse phase HPLC method enabling rapid simultaneous determination of purines, pyrimidines and allied compounds commonly found in biological fluids. J Chromatog 344:101–133 .Google Scholar
  15. 15.
    Stenzel A, Ban -holzer P, Reiter S, Grobner W, Zollner N, Hegeman M, Pfab R (1985) Activity of adenine phosphoribosyltransferase (APRT) in patients with renal failure and urolithiasis. In: Schwille PO, Smith LH, Robertson WG, Vahlensieck W (eds) Urolithiasis and related clinical research. Plenum Press, New York, p 347–353 .CrossRefGoogle Scholar
  16. 16.
    Kelley WN, Levy RI, Rosenbloom FM, Henderson JF, Seeg -miller JE (1986) Adenine phosphoribosyltransferase deficiency: a previously undescribed genetic defect in man. J Clin Invest 47:2281–2289 .CrossRefGoogle Scholar
  17. 17.
    Emmerson BT, Gordon RB, Thompson L (1974) Adenine phosphoribosyltransferase deficiency in a female with gout In: Sperling O, De Vries A, Wyngaarden JB (eds) Purine metabolism in man. Plenum Press, New York, 41 A: 327–331 .CrossRefGoogle Scholar
  18. 18.
    Ciompi ML, Bazzichi L, Mariani G, Pasero G (1985) APRT partial deficiency in a family. Ped Res 19:749CrossRefGoogle Scholar

Copyright information

© J. F. Bergmann Verlag, München 1986

Authors and Affiliations

  • H. A. Simmonds
    • 1
  1. 1.Purine LaboratoryUnited Medical School of Guy’s and St Thomas’LondonUK

Personalised recommendations