Advertisement

90. Kongreß pp 1309-1326 | Cite as

Nephrologie 1

  • P. Kurz
  • H. Köhler
  • T. Hütteroth
  • A. Knuth
  • S. Meuer
  • K.-H. Büschenfelde
  • R. E. Scharf
  • M. Frede
  • C. Finken
  • B. Grabensee
  • W. Schneider
  • W. Meyer-Sabellek
  • D. Gawlik
  • U. Gross
  • H. Heidemann
  • P. Meusers
  • L. Mertins
  • W. Kirch
  • E. E. Ohnhaus
  • H. Heine
  • J. Haunschild
  • W. Wagner
  • G. Kluger
  • U. Gilge
  • E. Heidbreder
  • W. H. Hörl
  • A. Heidland
  • M. Haag
  • W. Riegel
Conference paper
Part of the Verhandlungen der Deutschen Gesellschaft für Innere Medizin book series (VDGINNERE, volume 90)

Zusammenfassung

Erhöhte Infektanfälligkeit, verzögerte Transplantatabstoßung und abgeschwächte Überempfindlichkeitsreaktion vom verzögerten Typ sind klinische Hinweise auf die abnorme Immunreaktion bei Patienten mit terminaler Niereninsuffizienz [4]. Nach aktiver Impfung mit Hepatitis B-Vakzine (H-B Vax, MSD) entwickeln Patienten mit terminaler Niereninsuffizienz nur in etwa 50% Antikörper gegen HBs-Antigen, Probanden mit normaler Nierenfunktion dagegen in > 95% [5]. Ziel der vorliegenden Untersuchung war es deshalb, in vitro Einzelparameter der Immunantwort von Dialysepatienten nach Hepatitis B-Impfung zu analysieren.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Birkeland SA (1976) Uremia as a state of immune deficiency. Scand J Immunol 5: 107–115PubMedCrossRefGoogle Scholar
  2. 2.
    Cappel R, Van Beers D, Liesnard C, Dratwa M (1983) Impaired humoral and cell-mediated immune responses in dialyzed patients after influenza vaccination. Nephron 33: 21–25PubMedCrossRefGoogle Scholar
  3. 3.
    Daniels JC, Sakai H, Remmers AR, Sarles HE, Fish JC, Cobb EK, Levin WC, Ritzmann SE (1971) In vitro reactivity of human lymphocytes in chronic uraemia: Analysis and interpretation. Clin Exp Immunol 8: 213–227PubMedGoogle Scholar
  4. 4.
    Goldblum SE, Reed WP (1980) Host defenses and immunologic alterations associated with chronic hemodialysis. Ann Intern Med 93: 597–613PubMedCrossRefGoogle Scholar
  5. 5.
    Köhler H, Arnold W, Renschin G, Dormeyer HH, Meyer zum Büschenfelde KH (1984) Active hepatitis B vaccination of dialysis patients and medical staff. Kidney Int 25: 124–128PubMedCrossRefGoogle Scholar
  6. 6.
    Mezzano S, Pesce A, Peters T, Pollak VE, Reed R, Michael G (1982) Antibody production and antigenic specific suppression to bovine serum albumin in uremic rats. Clin Exp Immunol 48: 111–117PubMedGoogle Scholar
  7. 7.
    Newberry WM, Sanford JP (1971) Defective cellular immunity in renal failure: Depression of reactivity of lymphocytes to phytohemagglutinin by renal failure serum. J Clin Invest 50: 1262–1271PubMedCrossRefGoogle Scholar
  8. 1.
    Belch JJF, Greer I, Saniabadi AR, McLaren M, Sturrock R, Forbes CD, Prentice CRM (1983) Effects of ZK 36 374, a stable prostacyclin analogue in healthy volunteers. Thromb Haemostas 50: 279Google Scholar
  9. 2.
    Harker LA, Malpass TW, Branson HE, Hessel II EA, Slichter SJ (1980) Mechanism of abnormal bleeding in patients undergoing cardiopulmonary bypass: acquired transient platelet dysfunction associated with selective a-granule release. Blood 56: 824PubMedGoogle Scholar
  10. 3.
    O’Brien JR (1978) “Exhausted” platelets continue to circulate. Lancet 2: 1316PubMedCrossRefGoogle Scholar
  11. 4.
    Pareti FI, Capitanio A, Mannucci L, Ponticelli C, Mannucci PM (1980) Acquired dysfunction due to the circulation of “exhausted” platelets. Am J Med 69: 235PubMedCrossRefGoogle Scholar
  12. 5.
    Reimers H-J, Kinlough-Rathbone RL, Cazenave J-P, Senyi AF, Hirsh J, Packham MA, Mustard JF (1976) In vitro and in vivo functions of thrombin-treated platelets. Thromb Haemostas 35: 151Google Scholar
  13. 6.
    Scharf RE (1983) Thrombozyten und Mikrozirkulationsstörungen. Klinische und experimentelle Untersuchungen zum Sekretionsverhalten und Arachidonsäurestoffwechsel der Blutplättchen. Alexander-Schmidt-Preisarbeit, Ges Thromb Hämost Forsch, Bern 1984, p 256Google Scholar
  14. 7.
    Scharf RE, Grzibiela W, Hartmann B, Schnurr E, Grabensee B, Schneider W (1983) Plättchenspezifische Proteine und Thrombinaktivität bei Abstaungsreaktionen nach Nierentransplantation. Verh Dtsch Ges Inn Med 89: 976Google Scholar
  15. 8.
    Weston MJ (1983) Prostacyclin and extracorporal circulation. Br Med Bull 39: 285PubMedGoogle Scholar
  16. 1.
    Andreoli TE, Monahan M (1968) The interaction of polyene antibiotics with thin lipid membranes. J Gen Physiol 52: 300–325PubMedCrossRefGoogle Scholar
  17. 2.
    Briggs JP, Wright FS (1979) Feedback control of glomerular filtration rate: site of the effector mechanism. Am J Physiol 236: F40 - F47PubMedGoogle Scholar
  18. 3.
    Gerkens JF, Branch RA (1980) The influence of sodium status and furosemide on canine acute amphotericin B nephrotoxicity. J Pharmacol Exp Ther 214: 306–311PubMedGoogle Scholar
  19. 4.
    Gerkens JF, Heidemann HTH, Jackson EK, Branch RA (1983) Effect of aminophylline on amphotericin B nephrotoxicity in the dog. J Pharmacol Exp Ther 224: 609–613PubMedGoogle Scholar
  20. 5.
    Heidemann HTH, Gerkens JF, Spickard WA, Jackson EK, Branch RA (1983) Amphotericin B nephrotoxicity in humans decreased by salt repletion. Am J Med 75: 476–481PubMedCrossRefGoogle Scholar
  21. 6.
    Hermes H, Leser K, Osswald H (1983) Potentiation of tubularglomerular feedback by amphotericin B in rats. 16. Symposium der Gesellschaft fill- Nephrologie, SalzburgGoogle Scholar
  22. 7.
    Osswald H, Nabakowski G, Hermes H (1980) Adenosine a possible mediator of metabolic control of glomerular filtration rate. Int J Biochem 12: 263–267PubMedCrossRefGoogle Scholar
  23. 8.
    Rhoade EG, Ginn HE, Mirchmore HG, Smith WO, Hammarsten JF (1961) Effect of amphotericin B upon renal function in man. In: Gray P, Tabenkin B, Broadley SG (eds) Antimicrobiology agents annual, vol 1. Society for industrial microbiology. Plenum Press, New YorkGoogle Scholar
  24. 9.
    Sande MA, Mandell GL (1980) Antimicrobial agents In: Gilman AG, Goodman LS, Gilman A (eds) The pharmacological basis of therapeutics. Mcmillan Publishing, New YorkGoogle Scholar
  25. Aasen AO, Smith-Erichsen N, Gallimore MJ, Amundsen E (1980) Studies on components of the plasma kallikrein-kinin system in plasma samples from normal individuals and patients with septic shock. Adv Shock Res 4: 1–10PubMedGoogle Scholar
  26. Bleyl U, Sandler E, Schindler T (1981) The pathology and biology of uremic pneumonitis. Intensive Care Med 7: 193–202PubMedCrossRefGoogle Scholar
  27. Crosbie WA, Snowden S, Parsons V (1972) Changes in lung capillary permeability in renal failure. Br Med J 4: 388–391PubMedCrossRefGoogle Scholar
  28. Crystal RG, Gadek JE, Ferrans VJ, Fulmer JD, Line BR, Hunninghake GW (1981) Interstitial lung disease: Current concepts of pathogenesis, staging and therapy. Am J Med 70: 547–568CrossRefGoogle Scholar
  29. Friberger P (1982) Chromogenic peptide substrates. Their use for the assays of factors in the fibrinolytic and the plasma kallikreinkinin systems. Scand J Clin Lab Invest (Suppl 162 ) 42: 1Google Scholar
  30. Heidland A, Hört WH, Heller N, Heine H, Neumann S, Heidbreder E (1983) Proteolytic enzymes and catabolism — enhanced release of granulocyte proteinases in uremic intoxication and during hemodialysis. Kidney Int (in press)Google Scholar
  31. Hörl WH, Heidland A (1980) Enhanced proteolytic activity — cause of protein catabolism in acute renal failure. Am J Clin Nutr 33: 1423–1425PubMedGoogle Scholar
  32. Hörl WH, Stepinski J, Gantert C, Hörl M, Heidland A (1981) Evidence for the participation of proteases on protein catabolism during hypercatabolic renal failure. Klin Wochenschr 59: 751–759PubMedCrossRefGoogle Scholar
  33. Hörl WH, Stepinski J, Heidland A (1982) Further evidence for the participation of proteases in protein catabolism during hypercatabolic renal failure. In: Eliahou HE (ed) Acute renal failure. John Libbey, London, p 115Google Scholar
  34. Lee CT, Fein AM, Lippmann M, Holtzman H, Kimbal P, Weinbaum G (1981) Elastolytic activity in pulmonary lavage fluid from patients with adult respiratory distress syndrome. N Engl J Med 304: 192–196PubMedCrossRefGoogle Scholar
  35. McGuire WW, Spragg RG, Cohen AB, Cochrane CG (1982) Studies on the pathogenesis of the adult respiratory distress syndrome. J Clin Invest 69: 543–553PubMedCrossRefGoogle Scholar
  36. Nathan CF, Murray HW, Cohn ZA (1980) The macrophage as an effector cell. N Engl J Med 303: 6222–6226CrossRefGoogle Scholar
  37. Orlowski T, Ajewski Z, Wasiutynski A (1976) Uremic lung syndrome. In: Heidland A, Hennemann H, Kult J (eds) Renal insufficiency. Thieme, Stuttgart, p 225Google Scholar
  38. 1.
    Charles ST, Ketelslegers JM, Buysschaert M, Lambert A (1981) Hyperglycaemic effect of nifedipine. Br Med J 283: 19–2.CrossRefGoogle Scholar
  39. 2.
    Donnelly T, Harrower ADB (1980) Effect of nifedipine on glucose tolerance and insulin secretion in diabetic and non-diabetic patients. Curr Med Res Opin 6: 690–693PubMedCrossRefGoogle Scholar
  40. 3.
    Fleckenstein A, Fleckenstein-Griin G (1981) Calcium-Antagonismus - ein neues Wirkungsprinzip in der Koronartherapie. Winch Med Wochenschr (Suppl 1) 123: S15–S21.Google Scholar
  41. 4.
    Giugliano D, Torella R, Cacciapuoti F, Gentile S, Verza M, Varriocchio M (1980) Impairment of insulin secretion in man by nifedipine. Eur J Clin Pharmacol 18: 395–398PubMedCrossRefGoogle Scholar
  42. 5.
    Greenwood RH (1982) Hyperglycaemic effect of nifedipine. Br Med J 284: 50CrossRefGoogle Scholar
  43. 6.
    Kochsiek K, Neubauer J (1972) The effect of 4-(2’-nitrophenyl)-2,6-dimethyl-3,5-dicarbomethoxy-1,4-dihydropyridine on myocardial metabolism, haemodynamics, blood gases and general metabolism in man. Arzneim Forsch 22: 358–362Google Scholar
  44. 7.
    Malaisse WJ, Boschero AC (1977) Calcium antagonists and islet function. XI. Effect of nifedipine. Horm Res 8: 203–209PubMedCrossRefGoogle Scholar
  45. 1.
    Stepinski J, Hörl WH, Heidland A (1982) The gluconeogenetic ability of hepatocytes in various types of acute uraemia. Nephron 31: 75–81PubMedCrossRefGoogle Scholar
  46. 2.
    Riegel W, Stepinski J, Hörl WH, Heidland A (1981) Hormonelle Beeinflußbarkeit der Glukoneogenese in isolierten Hepatozyten bei experimenteller akuter Urämie. Verh Dtsch Ges Inn Med 87: 880–883Google Scholar
  47. 3.
    Riegel W, Stepinski J, Hörl WH, Heidland A (1982) Effect of hormones on hepatocyte gluconeogenesis in different models of acute uraemia. Nephron 32: 67–72PubMedCrossRefGoogle Scholar
  48. 4.
    Riegel W, Stepinski J, Münchmeyer M, Hörl WH, Heidland A (1983) Effect of serine on gluconeogenetic ability of hepatocytes in acute uremia. Kidney Int (Suppl 16 ) 24: 48–51Google Scholar
  49. 5.
    Demaugre F, Leroux JP, Cartier P (1978) The effects of pyruvate concentration, dichloroacetate and a-cyano-4-hydroxylinnamate on gluconeogenesis, ketogenesis and [3-hydroxybutyrate]/[3-oxobutyrate] ratios in isolated rat hepatocytes. Biochem J 172: 91–96PubMedGoogle Scholar
  50. 6.
    Patzelt C, Löffler G, Wieland OH (1973) Interconversion of pyruvate dehydrogenase in the isolated perfused rat liver. Eur J Biochem 33: 117–122PubMedCrossRefGoogle Scholar
  51. 7.
    Berry MN (1974) Energy demand of endogenous metabolism and gluconeogenesis in liver cells from normal and hyperthyroid rats. In: Lundquist F, Tygstrup N (eds) Regulation of hepatic metabolism. Academic Press, New York, p 568Google Scholar
  52. 8.
    Bremer J, Bierve KS, Christophersen BO, Daae LNW, Solberg HE, Aas M (1974) Factors controlling metabolism of fatty acids in the liver. In: Lundquist F, Tygstrup N (eds) Regulation of hepatic metabolism. Academic Press, New York, p 159Google Scholar
  53. 9.
    Williamson JR, Browning ET, Scholz R (1969) Control mechanisms of gluconeogenesis and ketogenesis. I Effects of oleate on gluconeogenesis in perfused rat liver. J Biol Chem 244: 4607–4616PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • P. Kurz
    • 1
  • H. Köhler
    • 1
  • T. Hütteroth
    • 1
  • A. Knuth
    • 1
  • S. Meuer
    • 1
  • K.-H. Büschenfelde
    • 1
  • R. E. Scharf
    • 2
  • M. Frede
    • 2
  • C. Finken
    • 2
  • B. Grabensee
    • 2
  • W. Schneider
    • 2
  • W. Meyer-Sabellek
    • 3
  • D. Gawlik
    • 3
  • U. Gross
    • 3
  • H. Heidemann
    • 4
  • P. Meusers
    • 4
  • L. Mertins
    • 4
  • W. Kirch
    • 4
  • E. E. Ohnhaus
    • 4
  • H. Heine
    • 5
  • J. Haunschild
    • 6
  • W. Wagner
    • 6
  • G. Kluger
    • 6
  • U. Gilge
    • 6
  • E. Heidbreder
    • 6
  • W. H. Hörl
    • 7
    • 8
  • A. Heidland
    • 6
    • 8
  • M. Haag
    • 8
  • W. Riegel
    • 8
  1. 1.I. Med. Klinik und PoliklinikJohannes-Gutenberg-Universität MainzDeutschland
  2. 2.Med Klinik und PoliklinikKlinik A, Universität DüsseldorfDeutschland
  3. 3.BerlinDeutschland
  4. 4.Med KlinikUniversitätsklinikum Essen, GHSEssenDeutschland
  5. 5.Anatom. InstitutUniversität HerdeckeDeutschland
  6. 6.Med. Univ.-Klinik WürzburgDeutschland
  7. 7.Med. Univ.-Klinik Freiburg/BrsgDeutschland
  8. 8.Med. Univ.-KlinikenFreiburg/Brsg. u. WürzburgDeutschland

Personalised recommendations