90. Kongreß pp 1161-1176 | Cite as

Stoffwechsel II

  • H. Kather
  • E. Wieland
  • B. Fischer
  • A. Wirth
  • H. Hauner
  • P. Feick
  • G. Löffler
  • D. Häussinger
  • H. Sies
  • W. Gerok
  • B. Limberg
  • B. Kommerell
  • O. Lea
  • K. von Bergmann
  • A. Gnasso
  • J. Augustin
Conference paper
Part of the Verhandlungen der Deutschen Gesellschaft für Innere Medizin book series (VDGINNERE, volume 90)

Zusammenfassung

Katecholamine spielen für die Mobilisation von Depotfett im Organismus eine wichtige Rolle. Im Gegensatz zu anderen Spezies vermag diese Hormonklasse beim Menschen die Freisetzung von Glyzerin und Fettsäuren aus dem Fettgewebe nicht nur zu stimulieren, sondern auch zu hemmen (Kather 1981). Die aktivierenden Wirkungen von Adrenalin und Noradrenalin werden über Beta-Rezeptoren vermittelt, die Hemmung der Depotfettmobilisation erfolgt über Alpha2-Rezeptoren.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Arner P, Engefeldt P, Nowak J (1981) In vivo observations on the lipolytic effect of noradrenaline during therapeutic fasting. J Clin Endocrinol Metab 53: 1207–1212PubMedCrossRefGoogle Scholar
  2. Hales CN, Lucio JP, Siddle K (1978) Hormonal control of adipose tissue lipolysis. Biochem Soc Symp 43: 97–135PubMedGoogle Scholar
  3. Kather H (1981) Hormonal regulation of adipose tissue lipolysis in man: Implications for the pathogenesis of obesity. Triangle 20: 131–143Google Scholar
  4. Kather H, Schröder F, Simon B (1982) Microdetermination of glycerol using bacterial NADH-linked luciferase. Clin Chim Acta 120: 295–300PubMedCrossRefGoogle Scholar
  5. Kjellberg J, Östman J (1971) Lipolysis and glucose tolerance in obese subjects during prolonged starvation. Acta Med Scand 190: 191–198Google Scholar
  6. Rodbell M ( 1964 ) Metabolism of isolated fat cells. J Biol Chem 239–384Google Scholar
  7. 1.
    Vasselli JR et al. (1983) Modern concepts of obesity. Nutr Rev 41: 361–373PubMedCrossRefGoogle Scholar
  8. 2.
    Green H, Kehinde O (1975) An established preadipose cell-line and its differentiation in culture. II. Factors influencing the adipose conversion. Cell 5: 19–27PubMedCrossRefGoogle Scholar
  9. 3.
    Kuri-Harcuch W, Green H (1978) Adipose conversion of 3T3 cells depends on a serum factor. Proc Natl Acad Sci USA 75: 6107–6109PubMedCrossRefGoogle Scholar
  10. 4.
    Grimaldi P et al. (1982) Differentiation of ob 17 preadipocytes to adipocytes: requirement of adipose conversion factor(s) for fat cell cluster formation. EMBO J 1: 687–693PubMedGoogle Scholar
  11. 5.
    Löffler G et al. (1983) An adipogenic serum factor in genetically obese rodents. FEBS Lett 153: 179–182PubMedCrossRefGoogle Scholar
  12. 6.
    Morikawa M et al. (1982) Growth hormone and the adipose conversion of 3T3 cells. Cell 29: 783–789PubMedCrossRefGoogle Scholar
  13. 1.
    Häussinger D (1983) Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intercellular glutamine cycle during ureogenesis in perfused rat liver. Eur J Biochem 133: 269–275PubMedCrossRefGoogle Scholar
  14. 2.
    Häussinger D, Gerok W (1984) Hepatocyte heterogeneity in ammonia metabolism: impairment of glutamine synthesis in CCI4 induced liver cell necrosis with no effect on urea synthesis. Chem Biol Interact 48: 191–194PubMedCrossRefGoogle Scholar
  15. 3.
    Häussinger D, Sies H (1979) Hepatic glutamine metabolism under the influence of the portal ammonia concentration in the perfused rat liver. Eur J Biochem 101: 179–184PubMedCrossRefGoogle Scholar
  16. 4.
    Häussinger D, Gerok W, Sies H (1983) Regulation of flux through glutaminase and glutamine synthetase in isolated perfused rat liver. Biochim Biophys Acta 755: 272–278PubMedCrossRefGoogle Scholar
  17. 5.
    Häussinger D, Sies H (1984) Effect of phenylephrine on glutamate and glutamine metabolism in isolated perfused rat liver. Biochem J (in press)Google Scholar
  18. 6.
    Atkinson DE, Camien MN (1982) The role of urea synthesis in the removal of metabolic bicarbonate and the regulation of blood pH. Curr Top Cell Regu121: 261–302Google Scholar
  19. 7.
    Oliver J, Koelz AM, Costello J, Bourke E (1977) Acid-base induced alterations in glutamine metabolism and ureogenesis in perfused muscle and liver of the rat. Eur J Clin Invest 7: 445–449PubMedCrossRefGoogle Scholar
  20. 8.
    Häussinger D, Gerok W, Sies H (1984) Hepatic role in pH regulation. Role of the intercellular glutamine cycle. Trends Biochem Sci (in press)Google Scholar
  21. 9.
    Häussinger D, Akerboom TPM, Sies H (1980) The role of pH and the lack of a requirement for hydrogencarbonate in the regulation of hepatic glutamine metabolism. Hoppe Seylers Z Physiol Chem 361: 995–1001PubMedCrossRefGoogle Scholar
  22. 1.
    Orrego H, Carmichael FJ, Phillips MJ, Kalant H, Khanna J, Israel Y (1976) Gastroenterology 71: 821–826PubMedGoogle Scholar
  23. 2.
    Schanne FAX, Pfau RG, Farber JL (1980) Am J Pathol 100: 25–38PubMedGoogle Scholar
  24. 3.
    Reichlin S (1983) N Engl J Med 309: 1556–1563PubMedCrossRefGoogle Scholar
  25. 4.
    Limberg B, Kommerell B (1983) IRCS Med Sci 11: 572–573Google Scholar
  26. 1.
    Adler RD, Bennion LH, Duane WS et al. (1975) Effects of low dose chenodeoxycholic acid feeding on biliary lipid metabolism. Gastroenterology 68: 326–334PubMedGoogle Scholar
  27. 2.
    Admirand WH, Small DM (1968) The physicochemical basis of cholesterol gallstone formation in man. J Clin Invest 47: 1043–1052PubMedCrossRefGoogle Scholar
  28. 3.
    Angelin B, Einarsson K, Leijd B (1979) Biliary lipid composition during treatment with different hypolipidaemic drugs. Eur J Clin Invest 9: 185–190PubMedCrossRefGoogle Scholar
  29. 4.
    Angelin B, Einarsson K, Leijd B (1984) Effect of ciprofibrate treatment on biliary lipids in patients with hyperlipoproteinaemia. Eur J Clin Invest 14: 73–78PubMedCrossRefGoogle Scholar
  30. 5.
    Bateson MC, Maclean D, Ross PE et al. (1978) Clofibrate therapy and gallstone induction. Dig Dis 23: 623–628Google Scholar
  31. 6.
    Bartlett GR (1959) Phosphorous assay in column chromatography. J Biol Chem 234: 466–468PubMedGoogle Scholar
  32. 7.
    Carey M, Small DM (1978) The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man. J Clin Invest 61: 998–1026PubMedCrossRefGoogle Scholar
  33. 8.
    Creger PL, Moersch GW, Neuklis WA (1976) Structure activity relationship of gemfibrozil (CI-719) and related compounds. Proc R Soc Med (Suppl 2 ) 69: 3–5Google Scholar
  34. 9.
    Eggstein M, Kreutz FH (1966) Eine neue Bestimmung der Neutralfette in Blutserum and Gewebe. Klin Wochenschr 44: 262–266PubMedCrossRefGoogle Scholar
  35. 10.
    Grundy SM, Ahrens EH Jr, Salen G et al. (1972) Mechanisms of action of clofibrate on cholesterol metabolism in patients with hyperlipidemia. J Lipid Res 13: 531–551PubMedGoogle Scholar
  36. 11.
    Grundy SM, Metzger AL (1972) A physiological method for estimation of hepatic secretion of biliary lipids in man. Gastroenterology 62: 1200–1217PubMedGoogle Scholar
  37. 12.
    Hall MJ, Nelson LM, Russel RI et al. (1981) Gemfibrozil–the effect on biliary cholesterol saturation of a new lipid-lowering agent and its comparison with clofibrate. Atherosclerosis 39: 511–516PubMedCrossRefGoogle Scholar
  38. 13.
    Hjermann I, Velve Byre K, Holme I, Leren P (1981) Effect of diet and smoking intervention on the incidence of coronary heart disease. Lancet 2: 1303–1313PubMedCrossRefGoogle Scholar
  39. 14.
    Hofmann AF, Grundy SM, Lachin JM et al. (1982) Pretreatment biliary lipid composition in white patients with radiolucent gallstones in the National Cooperative Gallstone Study. Gastroenterology 83: 738–752PubMedGoogle Scholar
  40. 15.
    Kaukola S, Manninen V, Malkonen M et al. (1981) Gemfibrozil in the treatment of dyslipidaemias in middle-aged male survivors of myocardial infarction. Acta Med Scand 209: 69–73PubMedCrossRefGoogle Scholar
  41. 16.
    Kesaniemi YA, Grundy SM (1984) Influence of gemfibrozil on metabolism of cholesterol and plasma triglycerides in man. JAMA (in press)Google Scholar
  42. 17.
    Kissebah AH, Adams PA, Wynn V (1976) Lipokinetic studies with gemfibrozil (CI-719). Proc R Soc Med (Suppl 2 ) 69: 94–97Google Scholar
  43. 18.
    Lageder H, Irsigler K (1976) Evalution of increasing doses of gemfibrozil in hyperlipoproteinaemia. Proc R Soc Med (Suppl 2 ) 69: 71–75Google Scholar
  44. 19.
    LaRusso NF, Hoffman NE, Hofmann AF et al. (1975) Effect of primary bile acid ingestion on bile acid metabolism and biliary lipid secretion in gallstone patients. Gastroenterology 69: 1301–1314PubMedGoogle Scholar
  45. 20.
    Leiß O, von Bergmann K (1983) Zusammenhänge zwischen Serum-Lipoproteinstoffwechsel and biliärem Lipidstoffwechsel. Klin Wochenschr 61: 579–592PubMedCrossRefGoogle Scholar
  46. 21.
    Leiß O, von Bergmann K (1984) Einfluß von Fenofibrat and Bezafibrat auf den biliären Lipidstoffwechsel. In: Kaffarnik H, Schneider J (Hrsg) Hyperlipoproteinämie. Pathophysiologie–Diagnostik–Therapie. perimed Fachbuch-Verlagsgesellschaft mbH, Erlangen, S 168–174Google Scholar
  47. 22.
    Lipid Research Clinics Program (1984) The lipid research clinics coronary primary prevention trial results. I. Reduction in incidence of coronary heart disease. JAMA 251: 351–364Google Scholar
  48. 23.
    Lipid Research Clinics Program (1984) The lipid research clinics coronary primary prevention trial results. II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA 251: 365–374Google Scholar
  49. 24.
    Lipid Research Clinics Program Manual of Laboratory Operations (1974) Department of Health, Education of Welfare Publication. NIH 75–628Google Scholar
  50. 25.
    Miettinen TA, Ahrens EH, Grundy SM (1965) Quantitative isolation and gas-liquid chromatographic analysis of total dietary and fecal neutral steroids. J Lipid Res 6: 411–424PubMedGoogle Scholar
  51. 26.
    Nair PP, Gordon M, Reback J (1967) The enzymic cleavage of the carbon-nitrogen bound in 3-alpha, 7-alpha, 12-alpha-trihydroxy-5-beta-cholan-25-oylglycine. J Biol Chem 242: 7–11PubMedGoogle Scholar
  52. 27.
    Nash DT (1980) Gemfibrozil–a new lipid lowering agent. J Med 11: 107–116PubMedGoogle Scholar
  53. 28.
    Nikkila EA, Ylikahri R, Huttunen JK (1976) Gemfibrozil: effect on serum lipids, lipoproteins, postheparin plasma lipase activities and glucose tolerance in primary hypertriglyceridaemia. Proc R Soc Med (Suppl 2 ) 69: 58–63Google Scholar
  54. 29.
    O’Connor RE (1982) Gemfibrozil–Results of clinical studies in the United States. In: Ricci G, Paoletti R, Pocchiari F, Poggiolini D (eds) Therapeutic selectivity and risk/benefit assessment of hypolipidemic drugs. Raven Press, New York, pp 59–61Google Scholar
  55. 30.
    Olsson AG, Roessner S, Wallding G et al. (1976) Effect of gemfibrozil on lipoprotein concentrations in different types of hyperlipoproteinaemia. Proc R Soc Med (Suppl 2 ) 69: 28–31Google Scholar
  56. 31.
    Palmer RH (1978) Prevalence of gallstones in hyperlipidemia and incidence during treatment with clofibrate and/or cholestyramine. Trans Assoc Am Physicians 91: 424–432PubMedGoogle Scholar
  57. 32.
    Paumgartner G, Horak W, Probst P et al. (1971) Effect of phenobarbital on bile flow and bile salt excretion in the rat. Naunyn-Schmiedebergs Arch Pharmako1270: 98–102Google Scholar
  58. 33.
    Pertsemlidis D, Panveliwalla D, Ahrens EH Jr (1974) Effects of clofibrate and of an estrogen-progestin combination on fasting biliary lipids and cholic acid kinetics in man. Gastroenterology 66: 565–573PubMedGoogle Scholar
  59. 34.
    Report from the Committee of Principal Investigators (1978) A co-operative trial in the primary prevention of ischemic heart disease using clofibrate. Br Heart J 40: 1069–1118CrossRefGoogle Scholar
  60. 35.
    Roeschlau P, Bernt E, Gruber W (1974) Enzymatische Bestimmung des Gesamt-Cholesterins im Serum. Z Klin Chem Klin Biochem 12: 226–231PubMedGoogle Scholar
  61. 36.
    Schlierf G, Chwat M, Feuerborn E et al. (1980) Biliary and plasma lipids and lipid-lowering chemotherapy–studies with clofibrate, fenofibrate and etofibrate in healthy volunteers. Atherosclerosis 36: 323–329CrossRefGoogle Scholar
  62. 37.
    Schlierf G, Fischer H, Roche A et al. (1980) Gallenlipide unter Bezafibrat. Münch Med Wochenschr 122: 165–168Google Scholar
  63. 38.
    Schwandt P, Weisweiler P, Neureuther G (1979) Serum lipoprotein lipids after gemfibrozil treatment. Artery 5: 117–124PubMedGoogle Scholar
  64. 39.
    Sedaghat A, Grundy SM (1980) Cholesterol crystals and the formation of cholesterol gallstones. N Engl J Med 302: 1274–1277PubMedCrossRefGoogle Scholar
  65. 40.
    Sedaghat A, Kesaniemi YA, Grundy SM (1983) Cholesterol crystals — a crucial link in formation of cholesterol gallstones. In: Paumgartner G, Stiehl A, Gerok W (eds) Bile acids and cholesterol in health and diseases. MTP Press, Lancaster, pp 43–53Google Scholar
  66. 41.
    Talalay P (1960) Enzymatic analysis of steroid hormones. Methods Biochem Anal 8: 114–143Google Scholar
  67. 42.
    The Coronary Drug Project Research Group (1975) Coronary drug project. Clofibrate and niacin in coronary heart disease. JAMA 231: 360–381CrossRefGoogle Scholar
  68. 43.
    Van Berge Henegouwen GP, Allan RN, Hofmann AF et al. (1977) A facile hydrolysis-solvolysis procedure for conjugated bile acid sulfates. J Lipid Res 18: 118–122Google Scholar
  69. 44.
    Vessby B, Lithell H, Boberg J et al. (1976) Gemfibrozil as a lipid lowering compound in hyperlipoproteinaemia. A placebo-controlled cross-over trial. Proc R Soc Med (Supp12) 69: 30–37Google Scholar
  70. 45.
    von Bergmann K, Leiss O (1984) Effect of short-term treatment with bezafibrate and fenofibrate on biliary lipid metabolism in patients with hyperlipidemia. Eur J Clin Invest 14: 150–154CrossRefGoogle Scholar
  71. 46.
    von Bergmann K, Leiß O (1984) Unveröffentlichte ErgebnisseGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • H. Kather
    • 1
  • E. Wieland
    • 1
  • B. Fischer
    • 1
  • A. Wirth
    • 1
  • H. Hauner
    • 2
  • P. Feick
    • 2
  • G. Löffler
    • 2
  • D. Häussinger
    • 3
  • H. Sies
    • 4
  • W. Gerok
    • 3
  • B. Limberg
    • 5
  • B. Kommerell
    • 5
  • O. Lea
    • 6
  • K. von Bergmann
    • 6
  • A. Gnasso
    • 6
  • J. Augustin
    • 6
  1. 1.Klin. Institut für HerzinfarktforschungMed. Univ.-Klinik HeidelbergDeutschland
  2. 2.Institut für BiochemieUniversität RegensburgDeutschland
  3. 3.Med. Univ.-Klinik Freiburg/BrsgDeutschland
  4. 4.Institut für Physiolog. Chemie IDüsseldorfDeutschland
  5. 5.Med. Univ.-Klinik HeidelbergDeutschland
  6. 6.Med. Univ.-Kliniken Bonn und HeidelbergDeutschland

Personalised recommendations