Skip to main content

Zusammenfassung

In der vorliegenden Studie sollten alterskorrigierte empirische genetische Belastungsziffern für die Verwandten ersten Grades (Eltern, Geschwister, Kinder) von Typ I-Diabetikern berechnet werden. Diese Risikoziffern sind wichtig für die genetische Beratung und für genetische Modelle des Typ I-Diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Köbberling J, Brüggeboes B (1980) Prevalence of diabetes among children of insulin-dependent diabetic mothers. Diabetologia 18: 459–462

    PubMed  Google Scholar 

  2. Köbberling J, Tillil H (1982) Empirical risk figures for first degree relatives of non-insulin dependent diabetics. In: Köbberling J, Tattersall R (eds) The genetics of diabetes mellitus. Academic Press, London New York, p 203

    Google Scholar 

  3. Gamble DR, Taylor KW (1969) Seasonal incidence of diabetes mellitus. Br Med J 3: 631–633

    PubMed  CAS  Google Scholar 

  4. Darlow JM, Smith Ch, Duncan LJP (1973) A statistical and genetical study of diabetes. III. Empiric risk to relatives. Ann Hum Genet 37: 157–174

    PubMed  CAS  Google Scholar 

  5. Spielman RS, Baker L, Zmijewski, ChM (1980) Gene dosage and susceptibility to insulin dependent diabetes. Ann Hum Genet 44: 135–150

    PubMed  CAS  Google Scholar 

  6. Cudworth AG, Wolf E (1982) The genetic susceptibility to type I (insulin-dependent) diabetes mellitus. Clin Endocrinol Metab 11: 389–408

    PubMed  CAS  Google Scholar 

Literatur

  1. Brocks D (Persönliche Mitteilung)

    Google Scholar 

  2. Brownlee M, Spiro RG (1979) Glomerular basement membrane metabolism in the diabetic rat in vivo studies. Diabetes 28: 121–125

    PubMed  CAS  Google Scholar 

  3. Hasslacher Ch, Kopischke HG, Bürklin E, Gechter F, Reichenbacher R (1982) In vivo studies on basement membrane synthesis in diabetic and nondiabetic rats. Res Exp Med 181: 245–251

    CAS  Google Scholar 

  4. Romen W, Heck T, Rauscher G, Lange HU, Hempel K (1980) Glomerular basement membrane turnover in young, old, and streptozotocindiabetic rats. Renal Physiol (Basel) 3: 324–329

    CAS  Google Scholar 

  5. Timpl R, Wiedemann H, van Delden V, Furthmayr H, Kühn K (1981) A network model for the organization of Type IV collagen molecules in basement membranes. Eur J Biochem 120: 203–211

    PubMed  CAS  Google Scholar 

Literatur

  1. Andreani D, DiMario U, Lavicoli M, Pozzilli P, Lumbrosco B, Guy U, Irvine WJ (1978) Immune complexes and diabetic retinopathy. Diabetologia 15: 215–218

    Google Scholar 

  2. Belfiore F, Napoli E, Vecchio LL 1972) Serum N-acetyl-beta-glucosaminidase activity in diabetic patients. Diabetes 21: 1168–1172

    PubMed  CAS  Google Scholar 

  3. Miller B, Keyes FP, Curreri PW (1966) Increase of serum beta-glucuronidase activity in human diabetes mellitus. JAMA 195: 127–130

    Google Scholar 

  4. Pitkänen E, Kyllästinen M, Koivula T, Hormila P (1980) Beta-N-acetylglucosaminidase and beta-glucuronidase activities in insulin-dependent diabetic subjects with retinopathy. Diabetologia 18: 275–278

    PubMed  Google Scholar 

  5. Whiting W, Ross IS, Borthwick L (1979) Serum and urine N-acetyl-beta-D-glucosaminidase in diabetics on diagnosis and subsequent treatment in insulin dependent diabetics. Clin Chim Acta 92: 459–463

    PubMed  CAS  Google Scholar 

  6. Dance N, Price RG, Cattell WR, Landsell J, Richards B (1970) The excretion of N-acetyl-beta-glucosaminidase and beta-galactosidase by patients with renal disease. Clin Chim Acta 27: 87–92

    PubMed  CAS  Google Scholar 

  7. Fushimi H, Tarui S (1974) Kidney and serum N-acetylglucosaminidase activities in streptozotocin diabetic rats and their responses to insulin and glucagon. J Biochem 76: 225–227

    PubMed  CAS  Google Scholar 

Literatur

  • Liebich HM, Pickert A, Stierle U, Wöll J (1980) Gas chromatography — mass spectrometry of saturated and unsaturated dicarboxylic acids in urine. J Chromatogr 199: 181–189

    PubMed  CAS  Google Scholar 

  • Liebich HM, Al-Babbili O (1975) Gas chromatographic — mass spectrometric study of volatile organic metabolites in urines of patients with diabetes mellitus. J Chromatogr 112: 539–550

    PubMed  CAS  Google Scholar 

Literatur

  1. Colwell JA, Lopes-Virella M, Halushka PV (1981) Pathogenesis of atherosclerosis in diabetes mellitus. Diabetes Care 4: 121–133

    PubMed  CAS  Google Scholar 

  2. Steiner G (1981) Diabetes and atherosclerosis: an overview. Diabetes (Suppl 2) 30: 1–7

    PubMed  CAS  Google Scholar 

  3. Tunbridge WMG (1981) Factors contributing to deaths of diabetics under fifty Years of age. Lancet 2: 569–572

    PubMed  CAS  Google Scholar 

  4. Janka HU (1983) Pathogenetische Faktoren für die Atherosklerose bei Diabetikern. Aktuel Endokr Stoffw 4: 9–15

    Google Scholar 

  5. Garcia MJ, McNamara PM, Gordon T, Kannel WB (1974) Morbidity and mortality in diabetics in the Framingham population. Diabetes 23: 105–111

    PubMed  CAS  Google Scholar 

  6. Janka HU, Standl E, Mehnert H (1980) Peripheral vascular disease in diabetes mellitus and its relation to cardiovascular risk factors: Screening with the Doppler ultrasonic technique. Diabetes Care 3: 207–213

    PubMed  CAS  Google Scholar 

  7. Janka HU, Grünwald P, Waldmann G, Standl E, Mehnert H (1982) Das Ruhe-EKG als Indikator für Gefäßveränderungen beim Diabetiker. Med Klin 77: 219–223

    Google Scholar 

  8. Janka HU, Grünwald P, Waldmann G, Standl E, Mehnert H (1982) Karotisstenosen, kardiovaskuläres Risikoprofil und assoziierte Makroangiopathie bei ambulanten Diabetikern: Die Schwabinger Studie zur Makroangiopathie bei Diabetikern. Vasa 11: 111 – 116

    PubMed  CAS  Google Scholar 

Literatur

  1. Berger H, Cicmir I, Grüneklee D, Gries FA (1981) Kardiovaskuläre Reflexstörungen und Pupillenstörungen bei autonomer diabetischer Neuropathie. Aktuel Neurol 1: 7–13

    Google Scholar 

  2. Cicmir I, Berger H, Gries FA (1983) Die diabetische Polyneuropathie. Dtsch Ärztebl (im Druck)

    Google Scholar 

  3. Cicmir I, Grüneklee D, Morguet A, Berger H, Kley HK, Lehmacher W, Gries FA (1980) Studies of heart oscillation in diabetics at rest. In: Gries FA, Freund HJ, Rabe F, Berger H (eds) Aspects of autonomic neuropathy in diabetes. Horm Metab Res (Suppl) 9: 73–76

    CAS  Google Scholar 

  4. Grüneklee D, Cicmir I, Morguet A, Wendel V, Bremer HJ (1981) Studies of beat-to-beat heart rate variation in resting diabetic children. In: Weber B (ed) Diabetic angiopathy in children. Karger, Basel, pp 255–259

    Google Scholar 

  5. Morguet A, Springer HJ (1981) Microcomputer-based measurement of beat-to-beat intervals and analysis of heart rate variability. Med Prog Technol 8: 77–82

    PubMed  CAS  Google Scholar 

Literatur

  • Pickup JC, Bilous RW, Viberti GC, Keen H, Jarret RJ, Glynne A, Cauldwell J, Root M, Rubenstein AH (1982) Plasma insulin and C-peptide after subcutaneous and intravenous administration of human insulin (recombinant DNA) and purified porcine insulin in healthy men. Diabetes Care (Suppl 2) 5: 29–34

    PubMed  CAS  Google Scholar 

  • Kemmer FW, Sonnenberg G, Cüppers HJ, Berger M (1982) Absorption kinetics of semisynthetic human insulin and biosynthetic (recombinant DNA) human insulin. Diabetes Care (Suppl 2) 5: 23–28

    PubMed  CAS  Google Scholar 

  • Galloway JA, Root MA, Bergstrom R, Spradlin CT, Howley DC, Fineberg SE, Jackson RL (1982) Clinical pharmacologic studies with human insulin (recombinant DNA). Diabetes Care (Suppl 2) 5: 13–22

    PubMed  CAS  Google Scholar 

  • Bottermann P, Gyaram H, Wahl K, Ermler R, Lebender A (1982) Insulin concentrations and time-action profiles of three different intermediate-acting insulin preparations in nondiabetic volunteers under glucose-controlled glucose infusion technique. Diabetes Care (Suppl 3) 5: 43–52

    PubMed  CAS  Google Scholar 

  • Schlüter KJ, Enzmann F, Kerp L (1983) Different potencies of biosynthetic human and purified porcine insulin. Horm Metab Res 15: 271–274

    PubMed  Google Scholar 

  • Müller R, Keller U, Berger W (1982) Comparison of semisynthetic and porcine insulin in man. J Clin Invest 12: 281

    Google Scholar 

  • Klier M, Kerner W, Torres AA, Pfeiffer EF (1981) Comparison of the biologic activity of biosynthetic human insulin in juvenile-onset diabetic subjects assessed by the glucose controlled insulin infusion system. Diabetes Care 4: 193–196

    PubMed  CAS  Google Scholar 

  • Schlüter KJ, Petersen K-G, Sontheimer J, Enzmann F, Kerp L (1982) Different counterregulatory response to human insulin (recombinant DNA) and purified pork insulin. Diabetes Care (Suppl 2) 5: 78–81

    PubMed  Google Scholar 

  • Rosak C, Althoff P-H, Enzmann F, Schöffling K (1982) Comparative studies on intermediary metabolism and hormonal counterregulation following human insulin (recombinant DNA) and purified pork insulin in man. Diabetes Care (Suppl 2) 5: 82–89

    PubMed  CAS  Google Scholar 

  • Raptis S, Karaiskos C, Enzmann F, Hatzidakis D, Zoupas C, Souvatzoglou A, Diamantopoulos E, Moulopoulos S (1982) Biologic activities of biosynthetic human insulin in healthy volunteers and insulin-dependent diabetic patients monitored by the artificial endocrine pancreas. Diabetes Care 4: 155–159

    Google Scholar 

  • Kerp L, Steinhilber S, Kasemir H (1966) Ein Verfahren zum Nachweis insulinbindender Antikörper durch Differentialadsorption. Klin Wochenschr 44: 560–567

    PubMed  CAS  Google Scholar 

Literatur

  • Christiansen AH (1973) Radioimmunoelectrophoresis in the determination of insulin binding to IgG. Methodological studies. Horm Metab Res 5: 147–154

    PubMed  Google Scholar 

  • Federlin K, Velčovsky H-G (1974) IgE-Antikörper bei Patienten mit Insulinallergie. Verh Dtsch Ges Inn Med 80: 1613–1617

    PubMed  CAS  Google Scholar 

  • Fireman P, Fineberg S-E, Galloway JA (1982) Development of IgE antibodies to human (recombinant DNA), porcine and bovine insulins in diabetic subjects. Diabetes Care (Suppl 2) 5: 119–125

    PubMed  Google Scholar 

  • Fineberg SE, Galloway JA, Fineberg NS, Rathbun MJ (1982) Immunologic improvement resulting from the transfer of animal insulintreated diabetic subjects to human insulin (recombinant DNA). Diabetes Care (Suppl 2) 5: 107–113

    PubMed  Google Scholar 

  • Hamilton RG, Rendell M, Adkinson NF (1980) Serological analysis of human IgG and IgE anti-insulin antibodies by solid-phase radioimmunoassays. J Lab Clin Med 96: 1022–1036

    PubMed  CAS  Google Scholar 

  • Kumar D (1981) Insulin allergy: Differences in the binding of porcine, bovine and human insulins with anti-insulin IgE. Diabetes Care 4: 104–107

    PubMed  CAS  Google Scholar 

  • Schlüter KJ, Kerp L (1982) Receptor binding studies and clinical effects of human insulin (recombinant DNA): Studies in patients with newly diagnosed typ I diabetes, typ II diabetes, insulin resistance (type A and type B), insulin antibodies, insulin allergy and “Brittle” diabetes. Diabetes Care (Suppl 2) 5: 152–160

    PubMed  Google Scholar 

  • Velčovsky HG, Federlin K (1982) Insulin-specific IgG and IgE antibody response in typ I diabetic subjects exclusively treated with human insulin (recombinant DNA). Diabetes Care (Suppl 2) 5: 126–128

    PubMed  Google Scholar 

Literatur

  • Beischer W, Keller L, Maas M, Schiefer M, Pfeiffer EF (1976) Human C-peptide, part I: Radioimmunoassay. Klin Wochenschr 54: 709–716

    PubMed  CAS  Google Scholar 

  • Dole VP, Meinertz H (1960) Microdetermination of long chain fatty acids in plasma and tissues. J Biol Chem 235: 2595–2607

    PubMed  CAS  Google Scholar 

  • Gerich JE, Langlois M, Noacco C, Karam JH, Fosham PH (1973) Lack of glucagon response to hypoglycemia diabetes: evidence for an intrinsic pancreatic alpha-cell defect. Science 182: 171–173

    PubMed  CAS  Google Scholar 

  • Hauff C, Sundermann S, Cüppers HJ, Broermann C, Schütte M, Berger M (1981) Absorptionskinetik und biologische Aktivität von semisynthetischem Humaninsulin. Wien Med Wochenschr 121: 10

    Google Scholar 

  • Heding L (1971) Radioimmunological determination of pancreas and gut glucagon in plasma. Diabetologia 7: 10–19

    PubMed  CAS  Google Scholar 

  • Klier M, Kerner W, Torres AA, Pfeiffer EF (1981) Comparison of the biologic activity of biosynthetic human insulin and natural pork insulin in juvenile-onset diabetic subjects assessed by the glucose controlled insulin infusion system. Diabetes Care

    Google Scholar 

  • Mackrell DJ, Sokal JE (1969) Antagonism between effects of insulin and glucagon on the isolated liver. Diabetes Care 18: 724–732

    CAS  Google Scholar 

  • Raptis S, Hadjidakis D, Enzmann F, Raptis A, Diamantopoulos E, Rosenthal J (1982) Inhibition of pancreatic glucagon responses to arginine by human insulin (recombinant DNA) and purified porcine insulin in normal and diabetic subjects. Diabetes Care 5: 93–101

    PubMed  Google Scholar 

  • Raptis S, Rosenthal J, Welzel D, Moulopoulos S (1981) Effects of cardioselective and non-cardioselective beta-blockade adrenaline-induced metabolic and cardiovascular responses in man. Eur J Clin Pharmacol 20: 17–22

    PubMed  CAS  Google Scholar 

  • Rosak CH (1982) Hormonal and metabolic regulation following purified pork insulin and human insulin. Diabetes Care 5: 82–89

    PubMed  CAS  Google Scholar 

  • Schmidt F (1971) Methoden der Harn- und Blutzuckerbestimmung. Hexokinase G-6-PDH-Verfahren. In: Pfeiffer EF (Hrsg) Handbuch des Diabetes mellitus, Bd 2. Lehmann, München, S 936–946

    Google Scholar 

  • Thompson JC, Reeder DD, Bunchman HH, Becker HD, Brandt EN (1972) Effect of secretion on circulation gastrin. Ann Surg 176: 384–390

    PubMed  CAS  Google Scholar 

  • Unger RH (1971) Glucagon physiology and pathophysiology. N Engl J Med 285: 443–449

    PubMed  CAS  Google Scholar 

Literatur

  1. Rüdiger HW, Dreyer M, Kühnau J, Bartelheimer H (1983) Familial insulin resistant diabetes secondary to an affinity defect of the insulin receptor. Hum Gen (im Druck)

    Google Scholar 

Literatur

Literatur

  1. Beck-Nielsen H, Pedersen O, Kragballe K, Sorensen NS (1977) The monocyte as a model for the study of insulin receptors in man. Diabetologia 13: 563–569

    PubMed  CAS  Google Scholar 

  2. Schlichtkrull O (1967) The M-value, a new index of blood glucose fluctuations. Acta Med Scand 13

    Google Scholar 

  3. Pedersen O, Beck-Nielsen H, Heding I (1978) Insulin receptor on monocytes from patients with ketosis-prone diabetes mellitus. Diabetes 27: 1098–1104

    PubMed  CAS  Google Scholar 

  4. Fantus G, Ryan J, Gorden P The insulin receptor in insulin-dependent diabetes mellitus: An in vivo and in vitro study. Metabolism 30: 510–517

    Google Scholar 

  5. Misbin RI, Pulkinnen AJ, Lofton SA et al. (1978) Ketoacidosis and the insulin receptor. Diabetes 27: 539–542

    PubMed  CAS  Google Scholar 

  6. Pedersen O, Beck-Nielsen H, Heding L (1980) Increased insulin receptors after exercise in patients with insulin-dependent diabetes mellitus. N Engl J Med 302: 886–892

    PubMed  CAS  Google Scholar 

  7. DeFronzo R, Hendler R, Simonson D (1982) Insulin resistance is a prominent feature of insulin dependent diabetes. Diabetes 31: 795–801

    PubMed  CAS  Google Scholar 

Literatur

  1. Berger M, Sonnenberg GE, Chantelau E (1982) Insulin pump treatment for diabetes: some questions can be answered already. Clin Physiol 2: 111

    Google Scholar 

  2. Brownlee M, Cahill GF (1979) Diabetic control and vascular complications. Atherosclerosis Rev 4: 29

    CAS  Google Scholar 

  3. Flückiger R, Winterhalter KH (1976) In vitro synthesis of hemoglobin A1c. FEBS Lett 71: 356

    PubMed  Google Scholar 

  4. Pickup JC, Keen H, Parsons JA, Alberti KGMM (1978) Continuous subcutaneous insulin infusion: an approach to achieving normoglycaemia. Br Med J 1: 204

    PubMed  CAS  Google Scholar 

  5. Raskin P, UNger RH (1978) Effect of insulin therapy on the profiles of plasma immunoreactive glucagon in juvenile-type and adult-type diabetics. Diabetes 27: 411

    PubMed  CAS  Google Scholar 

  6. Siperstein MD, Norton W, Unger RH, Madison LL (1966) Muscle capillary basement membrane width in normal, diabetic and prediabetic patients. Trans Assoc Am Physicians 79: 330

    PubMed  CAS  Google Scholar 

  7. Siperstein MD, Foster DW, Knowles HC, Madison LL, Roth J (1977) Control of blood glucose and diabetic vascular disease. N Engl J Med 296: 1060

    PubMed  CAS  Google Scholar 

  8. Sonnenberg GE, Chantelau E, Berger M (1981) Ein neues therapeutisches Prinzip in der Diabetologie: kontinuierliche Insulin-Infusion mittels portabler Pumpen. Dtsch Med Wochenschr 106: 891

    PubMed  CAS  Google Scholar 

  9. Sonnenberg GE, Chantelau E, Berger M (1982) Routine treatment of insulin-dependent diabetes mellitus with continuous subcutaneous insulin infusion. In: Skyler JS (ed) Insulin update 1982. Excerpta Medica, p 223

    Google Scholar 

Literatur

  • Blackshear PJ, Rohde TD, Prosi F, Buchwald H (1979) The implantable pump: A new concept of drug delivery. Med Prog Technol 6: 149–161

    PubMed  CAS  Google Scholar 

  • Buchwald H, Rohde TD, Schneider PD, Varco RL, Blackshear PJ (1980) Long-term, continuous intravenous heparin administration by an implantable pump in ambulatory patients with recurrent venous thrombosis. Surgery 88: 507–516

    PubMed  CAS  Google Scholar 

  • Irsigler K, Kritz H (1979) Long-term continuous insulin therapy with a portable insulin dosage-regulating apparatus. Diabetes 28: 196–203

    PubMed  CAS  Google Scholar 

  • Pietri A, Ehle A, Raskin P (1980) Changes in nerve conduction velocity after six weeks of glucoregulation with portable insulin infusion pumps. Diabetes 29: 668–671

    PubMed  CAS  Google Scholar 

  • Schlichtkrull J, Munk O, Jersild M (1965) The M-value, an index of blood sugar control in diabetes. Acta Med Scand 177: 95–102

    PubMed  CAS  Google Scholar 

  • Schulz G, Beyer J, Strack T, Krause U, Nagel J, Cordes U, Weber T (1982) Die Entwicklung von Insulininfusionsprofilen zur Therapie insulinpflichtiger Diabetiker mit tragbaren Insulininfusionssystemen. Biomed Tech (Berlin) 27: 203–208

    CAS  Google Scholar 

Literatur

  1. Boulton AJ, Drury J, Clarke B, Ward JD (1982) Continuous subcutaneous insulin infusion in the management of painful diabetic neuropathy. Diabetes Care 5: 386–390

    PubMed  CAS  Google Scholar 

  2. Kashiwagi S, Schottenfeld Y, Kessler C, Schreiber S, Grodtke N, Gries FA (1982) Technical problems and complications of treatment with continuous insulin infusion systems. Diabetologia 23: 178–179

    Google Scholar 

  3. Hamet P, Abarca G, Lopez D, Hamet M, Bourque M, Peyronnard JM, Charron L, Larochelle P (1982) Patient self-management of continuous subcutaneous insulin infusion. Diabetes Care 5: 485–491

    PubMed  CAS  Google Scholar 

  4. Hooymans JMM, Ballegooie EV, Schweitzer NM, Doorenbos H, Reitsma WD, Sluiter WJ (1982) Worsening of diabetic retinopathy with strict control of blood sugar. Lancet 2: 428

    Google Scholar 

  5. Irsigler K, Kritz H, Najemnik C, Freyler H (1980) Rückbildung einer floriden proliferativen diabetischen Retinopathie durch 5 Monate lang dauernde Normoglykämie mittels eines tragbaren Insulindosiergerätes. Wien Klin Wochenschr 8: 270–276

    Google Scholar 

  6. Irsigler K, Kritz H (1983) Neue Wege in der Diabetestherapie, extern tragbare und implantierbare Insulindosiergeräte. Internistische Welt 2: 37–50

    Google Scholar 

  7. Lauritzen T, Frost-Larsen K, Larsen HW, Deckert T (1983) Effect of 1 Year of near-normal blood glucose levels on retinopathy in insulin-dependent diabetics. Lancet 1: 200–204

    PubMed  CAS  Google Scholar 

  8. Mecklenburg RS, Benson JW, Becker NM, Brazel PL, Fredlund PN, Metz RJ, Nielsen RL, Sannar CA, Steenrod WJ (1982) Clinical use of the insulin infusion pump in 100 patients with type I diabetes. N Engl J Med 307: 513–518

    PubMed  CAS  Google Scholar 

  9. Pickup JC, White MC, Keen H, Parsons JA, Alberti KGMM (1979) Long-term continuous subcutaneous insulin infusion in diabetics at home. Lancet 2: 870–873

    PubMed  CAS  Google Scholar 

  10. Pietri A, Ehle AL, Raskin P (1980) Changes in nerve conduction velocity after six weeks of glucoregulation with portable insulin infusion pumps. Diabetes 29: 668–671

    PubMed  CAS  Google Scholar 

  11. Raskin P (1982) Treatment of type I diabetes with portable insulin infusion devices. Diabetes Care (Supp1 1) 5: 48–52

    PubMed  Google Scholar 

  12. Schiffrin A, Colle E, Belmonte MM (1982) Improved control in diabetes with continuous subcutaneous insulin infusion. Diabetes Care 3: 643–647

    Google Scholar 

  13. Skyler JS, Alberti KGMM (1980) Clinical assessment of metabolic control in insulin-dependent diabetes mellitus. Diabetes Care 3: 369–370

    PubMed  CAS  Google Scholar 

  14. White MC, Kohner EM, Pickup JC, Keen H (1981) Reversal of diabetic retinopathy by continuous subcutaneous insulin infusion: a case report. Br J Ophthalmol 65: 307–311

    PubMed  CAS  Google Scholar 

Literatur

  1. Grodsky GM, Epstein GH, Fanska R, Karam JH (1977) Pancreatic action of the sulfonylureas. Fed Proc 36: 2714–2719

    PubMed  CAS  Google Scholar 

  2. Lunetta M, Leonardi S, Rapisarda, S, Mughini L (1981) Effects of short and longterm glibenclamide treatment of the response of pancreatic alpha and beta cells to oral glucose loading in adult-onset diabetes. Curr Ther Res 30: 50–59

    Google Scholar 

  3. Feldman JM, Lebovitz HE (1971) Endocrine and metabolic effects of glibenclamide: evidence for an extrapancreatic mechanism of action. Diabetes 20: 745–755

    CAS  Google Scholar 

  4. Beck-Nielsen H, Pedersen O, Lindskow HO (1979) Increased insulin sensitivity and cellular insulin binding in obese diabetics following treatment with glibenclamide. Acta Endocrinol 90: 451–462

    PubMed  CAS  Google Scholar 

  5. Olefsky JM, Reaven GM (1976) Effects of sulfonylurea therapy on insulin binding to mononuclear leukocytes of diabetic patients. Am J Med 60: 89–95

    PubMed  CAS  Google Scholar 

  6. Bachmann W, Böttger I, Haslbeck M, Mehnert H (1979) Extrapancreatic action of sulfonylureas: effect of gliquidone on insulin and glucagon binding to rat liver plasma membranes. Eur J Clin Invest 9: 411–415

    PubMed  CAS  Google Scholar 

  7. Feinglos MN, Lebovitz HE (1978) Sulfonylureas increase the number of insulin receptors. Nature 276: 184–185

    PubMed  CAS  Google Scholar 

  8. Prince MJ, Olefsky JM (1980) Direct in vivo effect of a sulfonylurea to increase human fibroblast insulin receptors. J Clin Invest 66: 608–611

    PubMed  CAS  Google Scholar 

  9. Salhanick AJ, Konowitz P, Amatruda JM (1982) Potentiation of insulin sensitive lipogenesis by a sulfonylurea in rat hepatocytes. Diabetes (Suppl 2) 31: 213/54A

    Google Scholar 

  10. Maloff BL, Lockwood DH (1981) In vitro effects of a sulfonylurea on insulin action in adipocytes. J Clin Invest 68: 85–90

    PubMed  CAS  Google Scholar 

  11. Berry MN, Friend DS (1969) High-yield preparation of isolated rat liver parenchymal cells. J Cell Biol 43: 506–520

    PubMed  CAS  Google Scholar 

  12. Bernaert D, Wanson JC, Drochmans P, Popowski A (1977) Effect on insulin on ultrastructure and glycogenesis in primary cultures of adult rat hepatocytes. J Cell Biol 74: 878–900

    PubMed  CAS  Google Scholar 

  13. Joost HG, Arend W, Holze SA (1982) Effects of tolbutamide on insulin binding to isolated cells of the rat. Biochem Pharmacol 31: 1227–1231

    PubMed  CAS  Google Scholar 

  14. Vigneri R, Pezzino V, Iwamoto Y, Wong KY, Polosa P, Goldfine ID (1981) In vitro effects of oral hypoglycemic agents on the binding of 125I-insulin to cultured cells. In: Andreani D, DePirro R (eds) Serono Symposium, N 41. Academic Press, London New York

    Google Scholar 

  15. Hepp KD, Langley J, Funcke HJ v, Renner R, Kemmler W (1975) Increased insulin binding capacity of liver membranes from diabetic Chinese hamsters. Nature 258: 154

    PubMed  CAS  Google Scholar 

Literatur

  • Berger M, Berchtold P (1979) Beta-Rezeptorenblocker. Dtsch Med Wochenschr 104: 888–893

    PubMed  CAS  Google Scholar 

  • Wollf HP (1977) Hypoglykämie durch β-Rezeptoren-Blocker? Dtsch Med Wochenschr 102: 330–1335

    Google Scholar 

  • Patsch W, Patsch JR, Sailer S (1977) Untersuchung zur Wirkung von Pindolol auf Kohlenhydrat- und Fettstoffwechsel bei Diabetes mellitus. Int J Clin Pharmacol 15: 394– 398

    CAS  Google Scholar 

  • Schlierf G, Papanberg J, Raetzer H (1973) The effect of 1-(indol-4-yloxy)-3-isopropylamino-propan-2-ol (LB-46, Visken) on carbohydrate and lipid metabolism. Eur J Clin Pharmacol 5: 154–160

    CAS  Google Scholar 

  • Raptis S, Karaiskos K, Hatzidakis D, Zoupas Ch, Diamantopoulos E, Moulopoulos S (1982) Comparison of glycemic and metabolic control in diabetics, achieved by an artificial endocrine pancreas versus an open loop intravenous delivery system 12: 277–286

    Google Scholar 

  • Pfeiffer EF (1982) The artificial endocrine pancreas (AEP): Past, presence and future

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 J. F. Bergmann Verlag, München

About this paper

Cite this paper

Tillil, H. et al. (1983). Diabetes. In: Schlegel, B. (eds) Verhandlungen der Deutschen Gesellschaft für innere Medizin. Verhandlungen der Deutschen Gesellschaft für innere Medizin, vol 89. J.F. Bergmann-Verlag. https://doi.org/10.1007/978-3-642-85456-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85456-9_15

  • Publisher Name: J.F. Bergmann-Verlag

  • Print ISBN: 978-3-8070-0335-1

  • Online ISBN: 978-3-642-85456-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics