Advertisement

Klinische Pharmakologie

  • G. Schwietzer
  • A. Distler
  • S. Reeck
  • H. M. Thiede
  • T. Philipp
  • B. Krämer
  • M. Hausen
  • G. Walz
  • G. Stankov
  • M. Welsch
  • G. Krämer
  • W. Mäurer
  • W. Kübler
  • H. B. Steinhauer
  • M. Schächtete
  • B. Günter
  • M. Rachel
  • P. Schollmeyer
  • J. Grützmacher
  • R. Schicht
  • R. Schlaeger
  • V. Sill
  • P. Klooker
  • W. Kreusser
  • K. Strein
  • E. Ritz
  • U. Müllerleile
  • M. Garbrecht
  • P. Hanrath
  • K. Bieber
  • W. Thier
  • D. K. Hossfeld
  • J. Nitsch
  • M. Manz
  • G. Steinbeck
  • B. Lüderitz
  • C. J. Schuster
  • M. H. Weil
  • J. L. Vincent
  • G. Kreutz
  • R. Schulz
  • H. Kewitz
  • B. Weiß
  • K. Donat
  • W. J. Ziegler
  • W. Londong
  • V. Londong
  • C. Cederberg
  • H. Steffen
  • A. Sonnenberg
  • I. Kurosinski
  • C. Gleiter
  • K. H. Antonin
  • P. Bieck
  • W. E. Hansen
  • S. Berti
  • C. Piper
  • D. Wallem
  • N. Brattig
  • P. A. Berg
  • G.-J. Diao
  • O.-E. Brodde
  • K. D. Bock
  • N. Rohm
  • H.-R. Zerkowski
  • J. C. Reidemeister
  • W. Krone
  • U. Carl
  • D. Müller-Wieland
  • A. Wilke
  • H. Greten
  • U. F. Legler
  • L. Z. Benet
  • M. Eggstein
  • R. Hildebrandt
  • U. Gundert-Remy
  • A. Laßmann
  • W. von Prittwitz
  • R. Lissner
  • P. B. Beckstein
  • W. Schoeppe
  • N. Rietbrock
  • H. Hoensch
  • E. Ohnhaus
  • M. André
  • J. Grüner
  • W. Kirch
  • H. Spahn
  • H. J. Hutt
  • E. Mutschler
  • E. E. Ohnhaus
  • H. D. Kuntz
  • U. Ferriferi
  • B. May
  • J. Epping
  • S. Kohler
  • H. Heusler
  • E. Richter
  • U. Klotz
  • R. A. BaughmannJr
  • N. Massoud
  • R. L. Williams
  • H. R. Ochs
  • B. Verburg-Ochs
  • M. Knüchel
  • M. Missmahl
  • H. Knauf
  • U. Wais
  • J. Schölmerich
  • W. Gerok
Conference paper
Part of the Verhandlungen der Deutschen Gesellschaft für innere Medizin book series (VDGINNERE, volume 89)

Zusammenfassung

In früheren Untersuchungen wurde gezeigt [9], daß der pressorische Effekt von exogenem Noradrenalin (NA) bei Normalpersonen in reziproker Beziehung zum Plasma-NA-Spiegel — als Parameter der Sympathikusaktivität — steht. Bei Patienten mit essentieller Hypertonie ist das Verhältnis von NA-Reagibilität zur Plasma-NA-Konzentration gestört: Erhöhte Plasma-NA-Werte werden nicht durcn Reduktion der NA-Reagibilität kompensiert, bzw. bei normalen Plasma-NA-Spiegeln läßt sich eine erhöhte Reagibilität nachweisen [9]. Beide Parameter, Plasma-NA und NA-Reagibilität scheinen zusammen für die Blutdruckhöhe von Bedeutung zu sein.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Beretta-Piccoli C, Bianchetti MG, Weidman P, Boehringer K, Link L, Morton JJ (1982) J Cardiovasc Pharmacol 4:306–312CrossRefGoogle Scholar
  2. 2.
    Fleckenstein A (1977) Annu Rev Pharmacol Toxicol 17:149–166PubMedCrossRefGoogle Scholar
  3. 3.
    Gould BA, Mann S, Kieso A, Subramanian B, Raftery EB (1982) Circulation 65: 22–27PubMedCrossRefGoogle Scholar
  4. 4.
    Guazzi MD, Fiorentini C, Olivari MT, Bartorelli A, Necchi G, Polese A (1980) Circulation 61: 913–919PubMedGoogle Scholar
  5. 5.
    Midtbø K, Hals O, van der Meer J (1982) J Cardiovasc Pharmacol 4: 363–368CrossRefGoogle Scholar
  6. 6.
    Mikkelsen E, Andersson KE, Pedersen OL (1979) Acta Pharmacol Toxicol 44: 110–119CrossRefGoogle Scholar
  7. 7.
    Muiesan G, Agabiti-Rosei E, Castellano M, Alicandri CL, Corea L, Fanello R, Beschi M, Romanelli G (1982) J Cardiovasc Pharmacol 4: 325–329CrossRefGoogle Scholar
  8. 8.
    Peiper U, Griebe L, Wende W (1971) Pfluegers Arch 330: 74–89CrossRefGoogle Scholar
  9. 9.
    Philipp T, Distler A, Cordes U (1978) Lancet 2: 959–963PubMedCrossRefGoogle Scholar
  10. 10.
    Philipp T, Brokamp B, Cordes U, Lüth B, Distler A (1979) Verh Dtsch Ges Inn Med 85: 1047Google Scholar
  11. 11.
    Van Zwieten PA, van Meel JCA, Timmermans PBMWM (1982) J Cardiovasc Pharmacol 4: 273–279CrossRefGoogle Scholar
  12. 12.
    Vierhapper H, Waldhäusl W (1982) Eur J Clin Invest 12: 263–267PubMedCrossRefGoogle Scholar

Literatur

  1. 1.
    Ervik M (1975) Quantitative determination of metoprolol in plasma and urine by gas chromatography. Acta Pharmacol Toxicol [Suppl V] (Kbh) 36: 136–144CrossRefGoogle Scholar
  2. 2.
    Da Prada M, Zürcher G (1976) Simultaneous radioenzymatic determination of plasma and tissue adrenaline, noradrenaline and dopamine within the femtomole range. Life Sci 19: 1161–1174PubMedCrossRefGoogle Scholar
  3. 3.
    Davidson C, Thadani U, Taylor H, Hess H, Riess W (1976) Pharmacological studies with slow-release formulations of oxprenolol in man. Eur J Clin Pharmacol 10: 189–195CrossRefGoogle Scholar
  4. 4.
    Jackson G, Schwartz J, Kates RE, Winchester M, Harrison DC (1980) Atenolol: once-daily cardioselective beta blockade for angina pectoris. Circulation 61: 555–560PubMedGoogle Scholar
  5. 5.
    Regårdh C-G, Johnsson G, Jordö L, Sölvell L (1975) Comparative bioavailability and effects studies on metoprolol administered as ordinary and slow release tablets in single and multiple doses. Acta Pharmacol Toxocol (Kbh) [Suppl V] 36: 45–58Google Scholar
  6. 6.
    Sachs L (1978) Angewandte Statistik, 5. neubearbeitete Aufl. Springer, Berlin Heidelberg New YorkGoogle Scholar
  7. 7.
    Watson RDS, Littler WA (1979) Onset and duration of adrenergic receptor blockade following single oral dose acebutolol hydrochloride (Sectral). Br J Clin Pharmacol 7: 557–561PubMedGoogle Scholar

Literatur

  1. 1.
    Haeusler H, Gerold M (1979) Increased levels of prostaglandin-like material in the canine blood during arterial hypotension produced by hydralazine, dihydralazine und minoxidil. Naunyn-Schmiedebergs Arch Pharmacol 310: 155–167PubMedCrossRefGoogle Scholar
  2. 2.
    Kauker ML, Barr JG (1981) Effect of prostaglandin synthesis inhibitors on clonidin-induced diuresis in rats. Arch Int Pharmacodyn Ther 249: 106–115PubMedGoogle Scholar
  3. 3.
    Ohlsen UB (1976) Clonidin-induced increase of renal prostaglandin activity and water diuresis in conscious dogs. Eur J Pharmacol 36: 95–101CrossRefGoogle Scholar
  4. 4.
    Reimann IW, Ratge D, Wisser H, Frölich JC (1981) Are prostaglandins involved in the antihypertensive effect of dihydralazine. Clin Sci 61: 319–321Google Scholar
  5. 5.
    Rubin LJ, Lazar LD (1981) Influence of prostaglandin synthesis inhibitors on pulmonary vasodilatory effects of hydralazine in dogs with hypoxic pulmonary vasoconstriction. J Clin Invest 67: 193–200PubMedCrossRefGoogle Scholar
  6. 6.
    Steinhauer HB, Schächtele M, Sczesny CM, Schollmeyer P (1981) The effect of indometacin on the dihydralazine induced hypotension in man. Naunyn-Schmiedebergs Arch Pharmacol 316: R77Google Scholar
  7. 7.
    Steinhauer HB, Lubrich I, Günter M, Schollmeyer P (1983) Response of human platelets to inhibition of thromboxane synthesis. Clin Hemorheology 3: 1–12Google Scholar
  8. 8.
    Taube C, Hauser A, Dunemann A, Förster W (1978) Changes of prostaglandin synthesis in aorta, brain and kidney medulla of normal rats treated with antihypertensive drugs. Acta Biol Med Ger 37: 889–890PubMedGoogle Scholar
  9. 9.
    Taube C, Block HU, Förster W (1982) Antihypertensive drugs alter the production and the ratio of prostaglandins E and F in the organs of spontaneously hypertensive rats. Acta Biol Med Ger 41: 447–485Google Scholar

Literatur

  1. 1.
    Cohen BM (1981) Beurteilung von Theophyllindiamin und Phyllocontin bei Patienten mit obstruktiven Atemwegserkrankungen. Therapiewoche 31: 5134Google Scholar
  2. 2.
    Jansen W, Thoma R, Küpper HJ, Cipura W, Wichmann HE, Osterspey A, Behrenbeck DW, Tauchert M (1982) Der Einfluß von Reproterol und Aminophyllin auf die Hämodynamik und Atemwiderstand bei Patienten mit chronisch obstruktiver Atemwegserkrankung. Intensivmedizin 19: 245Google Scholar
  3. 3.
    Matthay RA, Berger HJ, Loke J, Gottschalk A, Zaret BL (1978) Effects of aminophylline upon right and left ventricular performance in chronic obstruktive pulmonary disease. Am J Med 65: 903PubMedCrossRefGoogle Scholar
  4. 4.
    Murphy GW, Schreiner BF, Yu PN (1968) Effects of aminophylline on the pulmonary circulation and left ventricular performance in patients with valvular heart disease. Circulation 37: 361PubMedGoogle Scholar
  5. 5.
    Neugebauer G, Kaumeier S, Schwarz JA (1981) Non-invasively determined cardiovascular actions and plasma concentrations of theophylline in man. In: Rietbrock V et al. (eds) Theophylline and other Methylxanthines. Proc. of an intern. Sympos. Vieweg, p 215Google Scholar
  6. 6.
    Ogilvie RI (1978) Clinical pharmacokinetics of theophylline. Clin Pharmacokin 3:267CrossRefGoogle Scholar
  7. 7.
    Ogilvie RI, Fernandez PG, Winsberg F (1977) Cardiovascular response to increasing theophylline concentrations. Eur J Clin Pharmacol 12: 409PubMedCrossRefGoogle Scholar

Literatur

  1. 1.
    Adler D et al. (1980) Inhibition of Na+ K+ stimulated ATP’ase in the cochlea of the guinea pig. Acta Otolaryngol (Stockh) 90: 55–60CrossRefGoogle Scholar
  2. 2.
    Cole CH et al. (1968) Induction of a ouabain sensitive ATP’ase defect by uremic plasma. Trans Assoc Am Physicians 81: 213–220PubMedGoogle Scholar
  3. 3.
    Edmondson RPS et al. (1975) Leucocyte sodium transport in uremia. Clin Sci Mol Med 49: 213–216PubMedGoogle Scholar
  4. 4.
    Fiehn W et al. (1976) Transport ATP’ases of cardiac sarcolemma in experimental uremia. Clin Chim Acta 73: 93–96PubMedCrossRefGoogle Scholar
  5. 5.
    Fine LG et al. (1976) On the influence of the natriuretic factor from patients with chronic uremia on the bioelectric properties and sodium transport of the isolated mammalian collecting tubule. J Clin Invest 58: 590–597PubMedCrossRefGoogle Scholar
  6. 6.
    Flanigan WJ et al. (1978) Site of action of a uremic serum fraction inhibiting sodium transport in frog skin. Nephron 22: 117–123PubMedCrossRefGoogle Scholar
  7. 7.
    Kramer P et al. (1978) Increased digitalis tolerance in uremic patients. In: Bodem G, Dengler HJ (eds) Cardic glycosides. Springer, Berlin Heidelberg New York, pp 304–313CrossRefGoogle Scholar
  8. 8.
    Patrick J, Jones NF (1974) Cell sodium, potassium and water in uremia and the effect of regular dialyses in the leucocyte. Clin Sci Mol Med 46: 583–590PubMedGoogle Scholar
  9. 9.
    Penpargkul S et al. (1976) Studies of subcellular control factors in hearts of uremic rats. J Lab Clin Med 88: 563–570PubMedGoogle Scholar
  10. 10.
    Peters U et al. (1978) Korrelationsstudie zwischen Serum-Digitoxinspiegel und herzdynamischer Wirkung bei Patienten mit chronischer Niereninsuffizienz. Z Kardiol [Suppl] 5: 18Google Scholar
  11. 11.
    Weissler AM (1968) Systolic time intervals in heart failure in man. Circulation 37: 149PubMedGoogle Scholar
  12. 12.
    Welt LG (1967) Membrane transport defect: the sick cell. Trans Assoc Am Physicians 80: 217–226PubMedGoogle Scholar

Literatur

  1. 1.
    Bühner R, Biedert S, Miura D (1980) Experimentelle Untersuchungen zur Klärung der Pathogenese der durch Adriamycin induzierten Kardiomyopathie, Arzneim Forsch Drug Res 30: 1065–1070Google Scholar
  2. 2.
    Daniels JR, Billingham ME, Gelbart A, Bristow MR (1976) Effect of Verapamil and Propranolol on Adriamycin-induced cardiomyopathy in rabbits. Circulation [Suppl II] 54: 70Google Scholar
  3. 3.
    Kaduk B, Seiler G (1977) Sekundäre kongestive Kardiomyopathie nach Adriamycin. Dtsch Med Wochenschr 102: 1813–1817PubMedCrossRefGoogle Scholar
  4. 4.
    Stein E, Hanrath P, Bleifeld W, Garbrecht M, Müllerleile U, Salecker B (1978) Abnormes Kontraktions- und Füllverhalten des linken Ventrikels bei Tumorpatienten unter Adriamycin-Therapie. Dtsch Med Wochenschr 103: 1408–1412PubMedCrossRefGoogle Scholar

Literatur

  1. 1.
    Andreasen F, Agerbaek H, Bjerregard P, Gotzsche H (1981) Pharmacokinetics of amiodarone after intravenous and oral administration. Eur J Clin Pharmacol 19: 293–299PubMedCrossRefGoogle Scholar
  2. 2.
    Flanagan RJ, Storey GCA, Holt DW (1980) Rapid HPLC method for the measurement of amiodarone in blood plasma or serum at the concentrations attained during therapy. J Chromatogr 12: 291–298Google Scholar
  3. 3.
    Kaski JC, Girotti LA, Messuti H, Rutitzky B, Rosenbaum MB (1981) Long-term management of sustained, recurrent symtomatic ventricular tachycardia with amiodarone. Circulation 64: 273–279PubMedCrossRefGoogle Scholar
  4. 4.
    Nademanee K, Hendrickson J, Kannan R, Singh BN (1982) Antiarrhythmic efficacy and electrophysiologic actions of amiodarone in patients with life-threatening ventricular arrhythmias. Am Heart J 103: 950–959PubMedCrossRefGoogle Scholar
  5. 5.
    Nitsch J, Steinbeck G, Lüdertiz B (1981) Mexiletinspiegel bei Patienten mit ventrikulären Arrhythmien und Nieren-, Leber- und Herzinsuffizienz. Verh Dtsch Ges Inn Med 87: 429–433Google Scholar
  6. 6.
    Rasmussen V, Berning J (1979) Effect of amiodarone in the WPW-syndrome. Acta Med Scand 205: 31–37PubMedCrossRefGoogle Scholar
  7. 7.
    Riva E, Gema M, Latini R, Giani P, Volpi A, Maggioni A (1982) Pharmacokinetics of amiodarone in man. J Cardiovasc Pharmacol 4: 264–269PubMedCrossRefGoogle Scholar

Literatur

  1. 1.
    Austin SM, Schreiner BF, Kramer DH, Shah PW, Yu PN (1976) The acute hemodynamic effects of ethacrynic acid and furosemide in patients with chronic postcapillary pulmonary hypertension. Circulation 53: 364–369PubMedGoogle Scholar
  2. 2.
    Benet LZ (1979) Pharmacokinetics/pharmacodynamics of furosemide in man: A review. J Pharmacokin Biopharm 7: 1–27CrossRefGoogle Scholar
  3. 3.
    Bhatia ML, Singh I, Manchanda SC, Khanna PK, Roy SB (1969) Effect of frusemide on pulmonary blood volume. Br M J 2: 551–552CrossRefGoogle Scholar
  4. 4.
    Biamino G, Wessel HJ, Noring J, Schröder R (1975) Plethysmographische und In vitro-Untersucungen über die vasodilatorische Wirkung von Furosemid (Lasix). Int J Clin Pharmacol 12: 356–368Google Scholar
  5. 5.
    Biddle TL, Yu PN (1979) Effect of furosemide on hemodynamics and lung water in acute pulmonary edema secondary to myocardial infarction. Am J Cardiol 43: 86–90PubMedCrossRefGoogle Scholar
  6. 6.
    Bland RD, McMillan DD, Bressack MA (1978) Decreased pulmonary transvascular fluid filtration in awake newborn lambs after intravenous furosemide. J Clin Invest 62: 601–609PubMedCrossRefGoogle Scholar
  7. 7.
    Davidov M, Kakaviatos N, Finnerty FA Jr (1967) Intravenous administration of furosemide in heart failure. JAMA 200: 824–829PubMedCrossRefGoogle Scholar
  8. 8.
    Demling RH, Will JA (1978) The effect of furosemide on the pulmonary transvascular fluid filtration rate. Crit Care Med 6: 317–319PubMedCrossRefGoogle Scholar
  9. 9.
    Dikshit K, Vyder JK, Forrester JS, Chatterjee K, Prakash R (1973) Renal and extrarenal hemodynamic effects of furosemide in congestive heart failure after acute myocardial infarction. N Engl J Med 288: 1087–1090PubMedCrossRefGoogle Scholar
  10. 10.
    Figueras J, Weil MH (1978) Blood volume prior to and following treatment of acute cardiogenic pulmonary edema. Circulation 57: 349–355PubMedGoogle Scholar
  11. 11.
    Farzier HS, Yager H (1973) The clinical use of diuretics. N Engl J Med 288: 246–249CrossRefGoogle Scholar
  12. 12.
    Kiely J, Kelly DT, Taylor DR, Pitt B (1973) The role of furosemide in the treatment of left ventricular dysfunction associated with acute myocardial infarction. Circulation 48: 581–587PubMedGoogle Scholar
  13. 13.
    Mond H, Hunt D, Sloman G (1974) Haemodynamic effects of frusemide in patients suspected of having acute myocardial infarction. Br Heart J 36: 44–53PubMedCrossRefGoogle Scholar
  14. 14.
    Piepenbrock S, Hempelmann G, Gaudszuhn B, Oelert H (1977) Zur kardialen und vaskulären Wirkung von Furosemid. Dtsch Med Wochenschr 102: 1661 – 1668PubMedCrossRefGoogle Scholar
  15. 15.
    Pontoppidan H, Geffin B, Lowenstein E (1972) Acute respiratory failure in the adult. N Engl J Med 287: 743–752PubMedCrossRefGoogle Scholar
  16. 16.
    Rystrom L, Weil MH, Shubin H, Palley N (1971) Technique of measurement of the plasma volume and red cell mass during acute circulatory failure. Surg Gynecol Obstet 133: 621–626PubMedGoogle Scholar
  17. 17.
    Schenk KE, Biamino G, Leitner ER, Schröder R (1976) Wirkung von Nitroglycerin, Furosemid und Ethacrynsäure auf die Hämodynamik in Ruhe und unter ergometrischer Belastung bei Patienten mit koronarer Herzerkrankung. Z Kardiol 65: 15–22PubMedGoogle Scholar
  18. 18.
    Schenk KE, Biamino G, Schröder R (1975) Vergleichende hämodynamische Untersuchungen über die extrarenale Wirkung von Furosemid und Ethacrynsäure. Klin Wochenschr 53: 1133–1134PubMedCrossRefGoogle Scholar
  19. 19.
    Scholz HR, Demiroglu C, Ritzl F (1970) Gesamtkörperwasser, Rhodanidraum und 131Jod-Albuminraum unter akuter Furosemidwirkung. Arzneim Forsch 20: 1249–1251Google Scholar
  20. 20.
    Schuster CJ, Weil MH, Telfer N (1980) Effect of furosemide on fluid shifts in saline loaded dogs. Crit Care Med 8: 267Google Scholar
  21. 21.
    Skillmann JJ, Parikh BM, Tanenbaum BJ (1970) Pulmonary arteriovenous mixture. Improvement with albumin and diuresis. Am J Surg 119: 440–447CrossRefGoogle Scholar
  22. 22.
    Starling EH (1896) On the absorption of fluids from the connective tissue spaces. J Physiol 19: 312–326PubMedGoogle Scholar
  23. 23.
    Tattersfielt AE, McNicol MW, Sillett RW (1974) Haemodynamic effects of intravenous frusemide in patients with myocardial infarction and left ventricular failure. Clin Sci Mol Med 46: 253–264Google Scholar
  24. 24.
    Turner AF, Lau FYK, Jacobson G (1972) A method for the estimation of pulmonary venous and arterial pressures from the routine chest roentgenogram. Am J Roentgenol 116: 97–100Google Scholar
  25. 25.
    Weil MH (1973) Simple method for measurement of plasma colloid osmotic pressure to guide fluid administration. Circulation 48: 13Google Scholar

Literatur

  1. Antunes CMF, Stolley PD, Rosenheim NB, Davies JL, Tonascia JA, Brown C, Burnett L, Rutledge A, Pokempner M, Garcia R (1979) Endometrial cancer and estrogen use. N Engl J Med 300: 9–13PubMedCrossRefGoogle Scholar
  2. Cornfield J (1951) A method of estimating comparative rates from clinical data. Applications to cancer of the lung, breast, and cervix. J Natl Cancer Inst 11: 1269–1275PubMedGoogle Scholar
  3. Frentzel-Beyme R, Leutner R, Wagner G, Wiebelt H (1979) Krebsatlas der Bundesrepublik Deutschland. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  4. Gray LA, Christopherson WM, Hoover RN (1977) Estrogens and endometrial carcinoma.Obstet Gynecol 49: 385–389PubMedGoogle Scholar
  5. Hammond CB, Jelovsek FR, Lee KL, Creasman WT, Parker RT (1979) Effects of long-term estrogen replacement therapy II. Neoplasia. Am J Obstet Gynecol 133: 537–547PubMedGoogle Scholar
  6. Hoogerland DL, Buchler DA, Crowley JJ (1978) Estrogen use — risk of endometrial carcinoma. Gynecol Oncol 6:451–454PubMedCrossRefGoogle Scholar
  7. Horwitz RI, Feinstein AR (1978) Alternative analytic methods for case-control studies of estrogens and endometrial cancer. N Engl J Med 299: 1089–1094PubMedCrossRefGoogle Scholar
  8. Hulka BS, Fowler WC, Kaufman DG, Grimson RC, Greenberg BG, Hogue CJR, Berger GS, Pulliam CC (1980) Estrogen and endometrial cancer: Cases and two control groups from North Carolina. Am J Obstet Gynecol 137: 92–101PubMedGoogle Scholar
  9. Jelovsek FR, Hammond CB, Woodard BH, Draffin R, Lee KL, Creasman WT, Parker RT (1980) Risk of exogenous estrogen therapy and endometrial cancer. Am J Obstet Gynecol 137: 85–91PubMedGoogle Scholar
  10. Jick H, Watkins RN, Hunter JR, Dinan BJ, Madsen S, Rothman KJ, Walker AM (1979) Replacement estrogens and endometrial cancer. N Engl J Med 300: 218–222PubMedCrossRefGoogle Scholar
  11. Mack TM, Pike MC, Henderson BE, Pfeffer RI, Gerkins VR, Arthur M, Brown SE (1976) Estrogens and endometrial cancer in a retirement community. N Engl J Med 294: 1262–1267PubMedCrossRefGoogle Scholar
  12. McDonald TW, Anneger JF, O’Fallon WM, Dockerty MB, Malkasian GD, Kurland LT (1977) Exogenous estrogen and endometrial carcinoma: Case-control and incidence study. Am J Obstet Gynecol 127: 572–580PubMedGoogle Scholar
  13. Salmi T (1979) Risk factors in endometrial carcinoma with special reference to the use of estrogens. Acta obstet gynecol scand Suppl 86: 2–119Google Scholar
  14. Shapiro S, Kaufman DW, Slone D, Rosenberg L, Miettinen OS, Stolley PD, Rosenshein NB, Watring WG, Leavitt T, Knapp RC (1980) Recent and past use of conjugated estrogens in relation to adenocarcinoma of the endometrium. N Engl J Med 303: 485–489PubMedCrossRefGoogle Scholar
  15. Smith DC, Prentice R, Thompson DJ, Herrmann WL (1975) Association of exogenous estrogen and endometrial carcinoma. N Engl J Med 293: 1164–1167PubMedCrossRefGoogle Scholar
  16. Stavraky KM, Collins JA, Donner A, Wells GA (1981) A comparison of estrogen use by women with endometrial cancer, gynecologic disorders, and other illnesses. Am J Obstet Gynecol 141: 547–555PubMedGoogle Scholar
  17. Völker W, Kannengiesser U, Majewski A, Vasterling HW (1978) Oestrogentherapie und Endometriumkarzinom. Geburtshilfe Frauenheilkd 38: 735–743PubMedGoogle Scholar
  18. Weiss NS, Szekely DR, English DR, Schweid AI (1979) Endometrial cancer in relation to patterns of menopausal estrogen use. JAMA 242: 261–264PubMedCrossRefGoogle Scholar
  19. Wigle DT, Grace M, Smith ESO (1978) Estrogen use and cancer of the uterine corpus in Alberta. Can Med Assoc J 118: 1276–1278PubMedGoogle Scholar
  20. Ziel HK, Finkle WD (1975) Increased risk of endometrial carcinoma among users of conjugated estrogens. N Engl J Med 293: 1167–1170PubMedCrossRefGoogle Scholar
  21. Ziel HK, Finkle WD (1976) Association of estrone with the development of endometrial carcinoma. Am J Obstet Gynecol 124: 735–740PubMedGoogle Scholar
  22. Statistisches Landesamt Berlin AI3/5-hj 2/77 (März 1978)Google Scholar

Literatur

  1. 1.
    Arzneimittelindex (1982) Orientierungshilfe für den Kassenarzt. Dtsch Ärtzebl 26Google Scholar
  2. 2.
    Borden EK (1981) Post-marketing surveillance: Drug epidemiology. J Int Med Res 9: 401PubMedGoogle Scholar
  3. 3.
    Caron HS, Roth HP (1968) Patient’s cooperation with a medical regimen. JAMA 203: 922PubMedCrossRefGoogle Scholar
  4. 4.
    Donat K (1978) Secondary prevention and associated drug therapy. Adv Cardiol 24: 84PubMedGoogle Scholar
  5. 5.
    Donat K (1982) Compliance — ein Problem, das jeden Arzt angeht. Fortschr Med 100: 2137PubMedGoogle Scholar
  6. 6.
    Gundert-Remy U, Remy C, Weber E (1976) Serum digoxin levels in patients of a general practice in Germany. Eur J Clin Pharmacol 10: 97PubMedCrossRefGoogle Scholar
  7. 7.
    Gundert-Remy U, Remy C, Weber E (1977) Eine Untersuchung zur Langzeitmedikation in einer Allgemeinpraxis. Verh Dtsch Ges Inn Med 83: 1624PubMedGoogle Scholar
  8. 8.
    Hollmann M (1982) Verordnung von Herz-Kreislauf-Therapeutika in einem Allgemeinkrankenhaus. Med Klin 77: 597Google Scholar
  9. 9.
    Lüscher T, Siegenthaler W, Vetter W, Vetter H (1982) Compliance. Dtsch Med Wochenschr 107: 1299PubMedCrossRefGoogle Scholar
  10. 10.
    Nüssel E (1980) Zwischenergebnisse der multizentrischen Studie über ambulante Koronargruppen. Pers. MitteilungGoogle Scholar
  11. 11.
    Schüren KP, Rietbrock N (1982) Digitalisbehandlung in Deutschland. Beispiel einer unkritischen Arzneimittelverordnung. Dtsch Med Wochenschr 107: 1935PubMedGoogle Scholar
  12. 12.
    Tigretti T, Berthoud S, Dayer P, Fabre J (1982) L’ usage des médicaments dans une policlinique de médecine. Schweiz Med Wochenschr 112: 706PubMedGoogle Scholar
  13. 13.
    Weber E, Ding R, Gundert-Remy U, Harenberg J, von Kenne H, Spohr U, Oh KU, Seidl G, Fritz U (1979) Verordnungsmuster einer Medizinischen Universitätsklinik. Klinikarzt 8: 851Google Scholar
  14. 14.
    Weber E, Gundert-Remy U (1982) Compliance: Wie der Patient die Verschreibung von Arzneimitteln befolgt. Dtsch Ärztebl 32Google Scholar
  15. 15.
    Weiß B, Donat K, Ziegler WJ (1982) Langzeitbeobachtung nach Herzinfarkt, I. Mitt. Herz Kreisl 14: 438Google Scholar

Literatur

  1. 1.
    Barreras R, Donaldson RM Jr (1967) Effects of induced hypercalcemia on human gastric secretion. Gastroenterology 52: 670–675PubMedGoogle Scholar
  2. 2.
    Berglindh T, Sachs G, Takeguchi N (1980) Ca2+-dependent secretagogue stimulation in isolated rabbit gastric glands. Am J Physiol 239: G90–G94PubMedGoogle Scholar
  3. 3.
    Kirkegaard P, Christiansen J, Petersen B, Skov Olsen P (1982) Calcium and stimulus-secretion coupling in gastric fundic mucosa. Effect of inhibition of calcium transport by verapamil on gastric acid secretion in the isolated guinea pig fundic mucosa and in healthy subjects. Scand J Gastroenterol 17: 533–538PubMedCrossRefGoogle Scholar
  4. 5.
    Smallwood RA (1967) Effect of intravenous calcium administration on gastric secretion of acid and pepsin in man. Gut 8: 592–598PubMedCrossRefGoogle Scholar
  5. 6.
    Soll A (1978) The actions of secretagogues on oxygen uptake by isolated mammalian parietal cells. J Clin Invest 61: 370–380PubMedCrossRefGoogle Scholar
  6. 7.
    Soll A (1978) The interaction of histamine with gastrin and carbamylcholine on oxygen uptake by isolated mammalian parietal cells. J Clin Invest 61: 381–389PubMedCrossRefGoogle Scholar
  7. 8.
    Soll A (1980) Secretagogue stimulation of 14C-aminopyrine accumulation by isolated canine parietal cells. Am J Physiol 238: G366–G375PubMedGoogle Scholar
  8. 9.
    Soll A (1981) Extracellular calcium and cholinergic stimulation of isolated canine parietal cells. J Clin Invest 68: 270–278PubMedCrossRefGoogle Scholar
  9. 10.
    Sonnenberg A, Berglindh T, Lewin MJM, Fischer JA, Sachs G, Blum AL (1979) Stimulation of acid secretion in isolated gastric cells. In: Rosselin G, Fromageot P, Bonfils S (eds) Hormone receptors in digestion and nutrition. Elsevier/North-Holland Biomedical Press, Amsterdam, p 337Google Scholar
  10. 11.
    Sonnenberg A, Hunziker W, Koelz HR, Fischer JA, Blum AL (1978) Stimulation of endogenous cyclic AMP (cAMP) in isolated gastric cells by histamine and prostaglandin. In: Öbrink KJ, Flemström G (eds) Gastric ion transport. Acta Physiol Scand [Special Suppl] Uppsala, p 307Google Scholar
  11. 12.
    Zanchetti A, Krikler DM (eds) (1981) Calcium antagonism in cardiovascular therapy: Experience with verapamil. Excerpta Medica, AmsterdamGoogle Scholar

Literatur

  1. 1.
    Feldman M, Richardson CT, Peterson WL, Walsh JH, Fordtran JS (1977) Effect of low-dose propantheline on food-stimulated gastric acid secretion. Comparison with an “optimal effective dose” and interaction with cimetidine. N Engl J Med 297: 1427–1430PubMedCrossRefGoogle Scholar
  2. 2.
    Heilmann K (1983) Therapeutische Systeme. Konzept und Realisation programmierter Arzneiverabreichung. 3. überarb. Aufl. Enke, Stuttgart, S 41–53Google Scholar
  3. 3.
    Scheurlen M, Antonin KH, Bieck P (1982) Effect of low-dose anticholinergic treatment with transdermal scopolamine (Transdermv) on gastric acid secretion. Scand J Gastroenterol [Suppl 78] 17: 112Google Scholar
  4. 4.
    Arnold SE, Kahn RJ, Faldetta LL, Laing RA, McNair DG (1981) Tricyclic antidepressants and peripheral anticholinergic activity. Psychopharmacol 74: 325–328CrossRefGoogle Scholar
  5. 5.
    Feldman M, Schiller L (1982) Effect of Bethanechol (Urecholine) on gastric acid and nonparietal secretion in normal subjects and duodenal ulcer patients. Gastroenterology 83: 262–266PubMedGoogle Scholar
  6. 6.
    Scheurlen M, Bittiger H, Ammann B (1983) A simple radioligand binding assay for the determination of urinary scopolamine. J Pharm Sci (accepted for publication)Google Scholar
  7. 7.
    NIH Conference. Moderator: Jensen RT; Discussants: Gardner JD, Raufman JP, Pandol SJ, Doppman JL, Collen MJ (1983) Zollinger-Ellison syndrome: Current concepts and management. Ann Intern Med 98: 59–75PubMedGoogle Scholar
  8. 8.
    Walt RP, Kalman CJ, Hunt RH, Misiewicz JJ (1982) Effect of transdermally administered hyoscine methobromide on nocturnal acid secretion in patients with duodenal ulcer. Br Med J 284: 1736–1738CrossRefGoogle Scholar

Literatur

  1. 1.
    Bertaccini G, Corazzi G (1982) Cholinergic-like effects of the new histamine H2-receptor antagonist ranitidine. Agents Actions 12: 168–171PubMedCrossRefGoogle Scholar
  2. 2.
    Hansen WE, Berti S (1982) Determination of acetylcholinesterase and pseudocholinesterase in gastrointestinal biopsy tissue. J Clin Chem Clin Biochem 20: 69–74PubMedGoogle Scholar
  3. 3.
    Hansen WE, Berti S (1983) The inhibition of acetylcholinesterase and pseudocholinesterase by cimetidine. Arzneim Forsch/Drug Res 33: 161–163Google Scholar
  4. 4.
    Kett K, Aadland E, Berstad A (1980) Inhibition of gastric secretion in man with a new H2-receptor antagonist, ranitidine. Scand J Gastroenterol 15: 249–251PubMedCrossRefGoogle Scholar
  5. 5.
    Peden NR, Saunders JHB, Wormsley KG (1979) Inhibition of pentagastrinstimulation and nocturnal gastric secretion by ranitidine. Lancet 1: 690–692PubMedCrossRefGoogle Scholar
  6. 6.
    Todrick A (1954) The inhibition of cholinesterase by antagonists of acetylcholine and histamine. Br J Pharmacol 9: 76–122Google Scholar
  7. 7.
    Wallin L, Madsen T, Boesby S (1983) Gastro-oesophageal function in normal subjects after oral administration of ranitidine. Gut 25: 154–157CrossRefGoogle Scholar

Literatur

  1. 1.
    Greenblatt DJ (1976) Diuretics. In: Miller RR, Greenblatt DJ (eds) Drug effects in hospitalized patients. Wiley, New YorkGoogle Scholar
  2. 2.
    Weber E, Czechanowski B (1983) Persönliche MitteilungGoogle Scholar
  3. 3.
    Dukes MNG (ed) (1980) Meyler’s side effects of drugs. Excerpta Medica, Amsterdam Oxford PrincetonGoogle Scholar
  4. 4.
    Heintz R (Hrsg) (1978) Erkrankungen durch Arzneimittel. Thieme, StuttgartGoogle Scholar
  5. 5.
    Steinberg AD (1968) Pulmonary edema following ingestion of hydrochlorothiazide. JAMA 204: 167–168CrossRefGoogle Scholar
  6. 6.
    Beaudry C, Laplante L (1973) Severe allergic pneumonitis from hydrochlorothiazide. Ann Intern Med 78: 251–253PubMedGoogle Scholar
  7. 7.
    Weddington WW, Mulroy MF, Sandri SR (1973) Pneumonitis and hydrochlorothiazide. Ann Intern Med 79: 283Google Scholar
  8. 8.
    Farrell TC, Schillaci RR (1976) Hydrochlorothiazide-induced pulmonary edema mimicking metastatic carcinoma of the breast. Cardiopulmonary Med 15: 16–17Google Scholar
  9. 9.
    Bell RT, Lippmann M (1979) Hydrochlorothiazide-induced pulmonary edema. Report of a case and review of the literature. Arch Intern Med 139: 817–819PubMedCrossRefGoogle Scholar
  10. 10.
    Gould L, Reddy CVR, Zen B, Singh BK (1980) Life-threatening reaction to thiazides. NY State J Med 1975–1976Google Scholar
  11. 11.
    Dorn MR, Walker BK (1981) Noncardiogenic pulmonary edema associated with hydrochlorothiazide therapy. Chest 79: 482–483PubMedCrossRefGoogle Scholar
  12. 12.
    Berg PA, Brattig N, Diao G-J, Schuff-Werner P (1983) Diagnose arzneimittelbedingter allergischer Nebenwirkungen mit Hilfe des Lymphozytentransformations-Tests. Allergologie (im Druck)Google Scholar
  13. 13.
    Dukes MNG (1981) Side effects of drugs annual 5. Excerpta Medica, Amsterdam Oxford PrincetonGoogle Scholar

Literatur

  1. Brodde O-E, Engel G, Hoyer D, Bock KD, Weber F (1981) The β-adrenergic receptor in human lymphocytes: Subclassification by the use of a new radio-ligand, (±)-125iodocyanopindolol. Life Sci 29: 2189–2198PubMedCrossRefGoogle Scholar
  2. Brodde O-E, Kuhlhoff F, Arroyo J, Prywarra A (1983) No evidence for temperature-dependent changes in the pharmacological specificity of β1- and β2-adrenoceptors in rabbit lung membranes. Naunyn-Schmiedebergs Arch Pharmacol 322: 20–28PubMedCrossRefGoogle Scholar
  3. Brodde O-E, Leifert F-J, Krehl H-J (1982) Coexistence of β1- and β2-adrenoceptors in the rabbit heart: Quantitative analysis of the regional distribution by (-)-3H-dihydroalprenolol binding. J Cardiovasc Pharmacol 4: 34–43PubMedCrossRefGoogle Scholar
  4. Bourdillon PDV, Dawson JR, Foale RA, Timmis AD, Poole-Wilson PA, Sutton GC (1980) Salbutamol in treatment of heart failure. Br Heart J 43: 206–210PubMedCrossRefGoogle Scholar
  5. Engel G, Hoyer D, Berthold R, Wagner H (1981) (±)-125Iodocyanopindolol, a new ligand for β-adrenoceptors: Identification and quantitation of subclasses of β-adrenoceptors in guinea-pig. Naunyn-Schmiedebergs Arch Pharmacol 317: 277–285PubMedCrossRefGoogle Scholar
  6. Hedberg A, Minneman KP, Molinoff PB (1980) Differential distribution of beta-1 and beta-2 adrenergic receptors in cat and guinea-pig heart. J Pharmacol Exp Ther 212: 503–508PubMedGoogle Scholar
  7. Irmer M, Wollschläger H, Just H (1981). Behandlung der schweren Herzinsuffizienz mit dem Beta-Stimulator Fenoterol. Klin Wochenschr 59: 639–645PubMedCrossRefGoogle Scholar
  8. Kingsley PJ, Volans GN (1974) A comparison of the β1- and β2-effects of subcutaneous isoprenaline, salbutamol and terbutaline in man. Eur J Clin Pharmacol 7: 263–268PubMedCrossRefGoogle Scholar
  9. Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TG (1967) Differentiation of receptor systems activated by sympathomimetic amines. Nature 214: 597–598PubMedCrossRefGoogle Scholar
  10. Minneman KP, Hegstrand LR, Molinoff PB (1979) Simultaneous determination of beta-1 and beta-2-adrenergic receptors in tissues containing both receptor subtypes. Mol Pharmacol 16: 34–46PubMedGoogle Scholar
  11. Rugg EL, Barnett DB, Nahorski SR (1978) Coexistence of beta1 and beta2 adrenoceptors in mammalian lung: Evidence from direct binding studies. Mol Pharmacol 14: 996–1005PubMedGoogle Scholar
  12. Scatchard G (1949) The attraction of proteins for small molecules and ions. Ann NY Acad Sci 51: 660–672CrossRefGoogle Scholar

Literatur

  1. 1.
    Krone W, Betteridge DJ, Galton DJ (1979) Mechanism of regulation of 3-hydroxy-3-methylglutaryl coenzyme. A reductase activity by low density lipoprotein in human lymphocytes. Eur J Clin Invest 9: 405–410PubMedCrossRefGoogle Scholar
  2. 2.
    Krone W, Hildebradt F, Greten H (1980) Effects of insulin, catecholamines and cyclic AMP on sterol synthesis in freshly isolated human lymphocytes. Diabetologia 19: (Abstract 228) 292Google Scholar
  3. 3.
    Betteridge DJ, Krone W, Reckless JPD, Galton DJ (1978) Compactin inhibits cholesterol synthesis in lymphocytes and intestinal mucosa from patients with familial hypercholesterolaemia. Lancet 2: 1342–1343PubMedCrossRefGoogle Scholar
  4. 4.
    Higgins MJP, Galton DJ (1977) The regulation of sterol biosynthesis in leucocytes of subjects with familial hypercholesterolaemia. Eur J Clin Invest 7: 301–305PubMedCrossRefGoogle Scholar
  5. 5.
    Brodde OE, Engel G, Hoyer D et al. (1981) The β-adrenergic receptor in human lymphocytes: Subclassification by the use of a new radio-ligand, (±)-125Iodocyanopindolol. Life Sci 29: 2189–2198PubMedCrossRefGoogle Scholar

Literatur

  1. Hemsworth TC, Renton KW (1981) Depression of Theophylline metabolism and elimination by Troleandomycin and Erythromycin. Biochem Pharmacol 30: 1299–1304PubMedCrossRefGoogle Scholar
  2. Renton KW, Gray JD, Hung OR (1981) Depression of Theophylline elimination by Erythromycin. Clin Pharmacol Ther 30: 422–426PubMedCrossRefGoogle Scholar
  3. Sachs L (1978) Angewandte Statistik, 5. neubearb. Aufl. Springer, Berlin Heidelberg New York, S 244–246Google Scholar
  4. Zarowitz BJM, Szefler SJ, Lasezkay GM (1981) Effect of Erythromycin base on Theophylline kinetics. Clin Pharmacol Ther 29: 601–605PubMedCrossRefGoogle Scholar

Literaturverzeichnis

  1. Cohen SL, Cramp DG, Lewis AD, Tickner TR (1980) The mechanism of hyperlipidaemia in nephrotic syndrome-role of low albumin and the LCAT reaction. Clin Chim Acta 104: 393–400PubMedCrossRefGoogle Scholar
  2. Fielding CJ (1970) Human lipoprotein lipase inhibition of activity by cholesterol. Biochim Biophys Acta 218: 221–226Google Scholar
  3. Guarnieri GF, Moracchiello M, Franco Ursini LC, Ferri L, Valente M, Gregolin C (1978) Lecithin-cholesterol acyltransferase (LCAT) activity in chronic uremia. Kidney Int 13: 26–30Google Scholar
  4. Laßmann A, Rietbrock N (1982) Stopped-flow studies on drug-protein binding. 2. Analog-computer analysis of the pH-dependent binding kinetics of warfarin and human serum albumin. Naunyn-Schmiedebergs Arch Pharmacol 320: 189–195PubMedCrossRefGoogle Scholar
  5. Laßmann A, Kratzer W, Rietbrock N (1983) Kinetik der Bindung von Dansylsarkosin (DS) zur Spezifizierung von Humanalbumin (HSA) in Serumkonserven. Fresenius Z Anal Chem (angenommen zur Publikation)Google Scholar
  6. Rietbrock N, Laßmann A (1980) Stopped-flow studies on drug-protein binding. 1. Kinetics of warfarin binding to human serum albumin. Naunyn-Schmiedebergs Arch Pharmacol 313: 269–274PubMedCrossRefGoogle Scholar
  7. Ulrich R, Laßmann A, Kaufmann R, Rietbrock N (1983) Untersuchungen des Einflusses von endogenen Substanzen auf das Bindungsverhalten von Dansylsarkosin an Albumin im Nüchternserum von 12 gesunden Spendern. Fresenius Z Anal Chem (eingereicht zur Publikation)Google Scholar

Literatur

  1. Barke E (1982) Hexachlorcyclohexan-Kontamination. In: „Mitteilung“/Kommission zur Prüfung von Rückständen in Lebensmitteln. Harald Boldt Verlag, Boppard. Deutsche Forschungsgemeinschaft, S 7–51 und 63–65Google Scholar
  2. Danhof M, Breimer DD (1979) Studies on the different metabolic pathways of antipyrine in man I. Oral administration of 250, 500, and 1000 mg to healthy volunteers. Br J Clin Pharmacol 8: 529–537PubMedGoogle Scholar
  3. Dossing M (1982) Changes in hepatic microsomal enzyme function in workers exposed to mixtures of chemicals. Clin Pharmacol Ther 32: 340–346PubMedCrossRefGoogle Scholar
  4. Forth W (1980) Hexachlorcyclohexan-Gift in den Lebensmitteln? Dtsch Ärztebl 37: 2169–2176Google Scholar
  5. Kolmodin B, Azarnoff DL, Sjöqvist F (1969) Effect of environmental factors on drug metabolism: decreased plasma half-life of antipyrine in workers exposed to chlorinated hydrocarbon insecticides. Clin Pharmacol Ther 10: 638–642PubMedGoogle Scholar
  6. Lehnert G, Brassow H-L, Baumann K, Angerer J (1979) Zur gesundheitlichen Relevanz einer chronischen Hexachlorcyclohexan-Belastung. Hamburger Ärzteblatt 12: Dez.Google Scholar
  7. Park BK, Ohnhaus EE (1983) Urinary 6 β-Hydroxycortisol: a simple, noninvasive index of enzyme induction in man. Ärztl Lab 29: 53–58Google Scholar
  8. Vestal RE, Norris AH, Tobin JD, Cohen BH, Shock NW, Andres R (1975) Antipyrin metabolism in man: influence of age, alcohol, caffein, and smoking. Clin Pharmacol Ther 18: 425–432PubMedGoogle Scholar
  9. Wood AJJ, Vestal RE, Wilkinson GR, Branch RA, Shand DG (1979) Effect of aging and cigarette smoking on antipyrin and indocyanine green elimination. Clin Pharmacol Ther 26: 16–20PubMedGoogle Scholar

Literatur

  1. Bucher H, Redetzki H (1951) Eine spezifische photometrische Bestimmung von Aethylalkohol auf fermentativem Wege. Klin Wochenschr 29: 615PubMedCrossRefGoogle Scholar
  2. Conney AH (1967) Pharmacological implications of microsomal enzyme induction. Pharmacol Rev 19: 317PubMedGoogle Scholar
  3. Lieber SC, DeCarli LS (1968) Ethanol oxidation by hepatic microsomes: adaptive increase after ethanol feeding. Science 162: 917PubMedCrossRefGoogle Scholar
  4. Schäfer M, Mutschler E (1979a) Fluorimetric determination of atenolol in plasma and urine by direct evaluation on thin layer chromatograms. J Chromatogr 169: 477PubMedCrossRefGoogle Scholar
  5. Schäfer M, Mutschler E (1979b) Fluorimetric determination of oxprenolol in plasma by direct evaluation on thin layer chromatograms. J Chromatogr 164: 247PubMedCrossRefGoogle Scholar
  6. Sotaniemi EA, Anthila M, Rautio A, Stengard J, Sankko P, Järvensiun P (1981) Propranolol and sotalol metabolism after a drinking party. Clin Pharmacol Ther 29: 705PubMedCrossRefGoogle Scholar
  7. Wallace JE, Dahl EV (1966) Rapid vapour phase method for determining ethanol in blood and urine by gas chromatography. Am J Clin Pathol 46: 152Google Scholar

Literatur

  1. 1.
    Andreasen PB, Ranek L, Statland BE, Tygstrup N (1974) Clearance of antipyrine — dependence of quantitative liver function. Eur J Clin Invest 4: 129–134PubMedGoogle Scholar
  2. 2.
    Azzolini F, Gazzaniger A, Lodola E (1972) Elimination of chloramphenicol and thiamphenicol in subjects with cirrhosis of the liver. Int J Clin Pharmacol Biopharm 6: 130–134Google Scholar
  3. 3.
    Branch RA, Herbert CM, Read AE (1973) Determinants of serum antipyrine half-lifes in patients with liver disease. Gut 14: 569–573PubMedCrossRefGoogle Scholar
  4. 4.
    Dutton GJ (1980) Glucuronidation of drugs and other compounds. CRS Press, Boca Raton (Florida), pp 149–158Google Scholar
  5. 5.
    Farrell GC, Cooksley WG, Hart P, Powell LW (1978) Identification of patients with impaired hepatic drug metabolism. Gastroenterology 75: 580–588PubMedGoogle Scholar
  6. 6.
    Femfert U, Kuntz HD, May B (1983) Pharmacokinetics and biotransformation of hymecromone after intravenous administration to patients with impaired liver functions. Naunyn-Schmiedebergs Arch Pharmacol [Suppl] 322: 105Google Scholar
  7. 7.
    Forrest JAH, Finlayson NDC, Adjepon-Yamoah KK, Prescott LF (1977) Antipyrine, paracetamol and lignocaine elimination in chronic liver diseases. Br Med J 1384–1387Google Scholar
  8. 8.
    Gugler R, Eichelbaum M (1981) Dosisanpassungen von Medikamenten bei chronischen Lebererkrankungen. Leber Magen Darm 11: 81–87PubMedGoogle Scholar
  9. 9.
    Held H, v Berger L, v Oldershausen HF (1968) Zur Pharmakokinetik von Sulfonamiden bei Leberschäden. Verh Dtsch Ges Inn Med 74: 1140–1143PubMedGoogle Scholar
  10. 10.
    Hepner GW, Vesell ES, Lipton A, Harvey HA, Wilkinson GR (1977) Disposition of aminopyrine, antipyrine, diazepam and indocyanine green in patients with liver disease or on anticonvulsant therapy: diazepam breath test and correlations in drug elimination. J Lab Clin Med 90: 440–456PubMedGoogle Scholar
  11. 11.
    Kuntz HD, Straub H, May B (1982) Hepatic function in heart failure. Scand J Gastroenterol [Suppl 78] 17: 374Google Scholar
  12. 12.
    Muschek LD, Grindel JM (1980) Review of the pharmacokinetics and metabolism of zomepirac in man and animals. J Clin Pharmacol 20: 223–229PubMedGoogle Scholar
  13. 13.
    Patwardhan RV, Johnson RF, Hoyumpa AJ, Sheehan JJ, Desmond PV, Wilkinson GR, Branch RA, Schenker S (1981) Normal metabolism of morphine in cirrhosis. Gastroenterology 81: 1106–1111Google Scholar
  14. 14.
    Remmer H (1970) The role of the liver in drug metabolism. Am J Med 49: 617–629PubMedCrossRefGoogle Scholar
  15. 15.
    Remmer H (1979) Biochemische Grundlagen, therapeutische Bedeutung und Verhinderung von Arzneimittelwechselwirkungen auf pharmakokinetischer Ebene. Internist 20: 213–224PubMedGoogle Scholar
  16. 16.
    Sellers EM, Greenblatt DJ, Giles HG, Naranjo CA, Kaplan H, MacLeod SM (1979) Chlordiazepoxid and oxazepam disposition in cirrhosis. Clin Pharmacol Ther 26: 240–246PubMedGoogle Scholar
  17. 17.
    Shull HJ, Wilkinson GR, Johnson R, Schenker S (1976) Normal disposition of oxazepam in acute viral hepatitis and cirrhosis. Ann Intern Med 84: 420–425PubMedGoogle Scholar
  18. 18.
    Wilkinson GR, Schenker S (1976) Effects of liver disease on drug disposition in man. Biochem Pharmacol 25: 2675–2681PubMedCrossRefGoogle Scholar
  19. 19.
    Witassek F, Preisig R (1983) Abnormal ester-glucuronidation in liver disease: studies using the new analgesic zomepirac. Naunyn-Schmiedebergs Arch Pharmacol [Suppl] 322: 129Google Scholar
  20. 20.
    Zysset T, Bircher J (1983) Dosisanpassung von Medikamenten für Leberpatienten mit Hilfe einer einfachen Risikoklassifikation. Internist 24: 151–161PubMedGoogle Scholar

Literatur

  1. 1.
    Cherrick GR, Stein SW, Leevy CM et al. (1960) Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest 39: 592–600PubMedCrossRefGoogle Scholar
  2. 2.
    Caesar J, Shaldon S, Chiandussi L et al. (1961) The use of indocyanine green in the measurement of hepatic blood flow and as a test of hepatic function. Clin Sci 21: 43–57PubMedGoogle Scholar
  3. 3.
    Leevy CM, Mendenhall CL, Lesko W et al. (1962) Estimation of hepatic blood flow with indocyanine green. J Clin Invest 41: 1169–1179PubMedCrossRefGoogle Scholar
  4. 4.
    Wiegand BD, Ketterer SG, Rapaport E (1960) The use of indocyanine green for the evaluation of hepatic function and blood flow in man. Am J Dig Dis 5: 427–436PubMedCrossRefGoogle Scholar
  5. 5.
    Paumgartner G (1975) The handling of indocyanine green by the liver. Schweiz Med Wochenschr [Suppl] 1–30Google Scholar

Literatur

  1. 1.
    Klotz U, Avant GR, Hoyumpa A, Schenker S, Wilkinson GR (1975) The effects of age and liver disease on the disposition and elimination of diazepam in adult man. J Clin Invest 55: 347–359PubMedCrossRefGoogle Scholar
  2. 2.
    Branch RA, Morgan MH, James J, Read AE (1976) Intravenous administration of diazepam in patients with chronic liver disease. Gut 17: 975–983PubMedCrossRefGoogle Scholar
  3. 3.
    Andreasen PB, Hendel J, Greisen G, Hvidberg EF (1976) Pharmacokinetics of diazepam in disordered liver function. Eur J Clin Pharmacol 10: 115–120PubMedCrossRefGoogle Scholar
  4. 4.
    Klotz U, Antonin KH, Brugel H, Bieck PR (1977) Disposition of diazepam and its major metabolite desmethyldiazepam in patients with liver disease. Clin Pharmacol Ther 21: 430–436PubMedGoogle Scholar
  5. 5.
    Greenblatt DJ, Shader RI, Divoll M, Harmatz JS (1981) Benzodiazepines: A summary of pharmacokinetic properties. Br J Clin Pharmacol 11: 11S–16SPubMedGoogle Scholar
  6. 6.
    Shader RI, Georgotas A, Greenblatt DJ, Harmatz JS, Allen MD (1978) Impaired absorption of desmethyldiazepam from clorazepate by magnesium aluminum hydroxide. Clin Pharmacol Ther 24: 308–315PubMedGoogle Scholar
  7. 7.
    Greenblatt DJ, Divoll M, Harmatz JS, MacLaughlin DS, Shader RI (1981) Kinetics and clinical effects of flurazepam in young and elderly noninsomniacs. Clin Pharmacol Ther 30: 475–486PubMedCrossRefGoogle Scholar
  8. 8.
    Greenblatt DJ, Ochs HR, Lloyd BL (1980) Entry of diazepam and its major metabolite into cerebrospinal fluid. Psychopharmacology 70: 89–93PubMedCrossRefGoogle Scholar
  9. 9.
    Ochs HR, Greenblatt DJ, Bodem G (1980) Single- and multiple-dose kinetics of intravenous digoxin. Clin Pharmacol Ther 28: 340–345PubMedCrossRefGoogle Scholar
  10. 10.
    Greenblatt DJ, Shader RI (1978) Dependence, tolerance, and addiction to benzodiazepines: clinical and pharmacokinetic considerations. Drug Metab Rev 8: 13–28PubMedCrossRefGoogle Scholar
  11. 11.
    Roberts RK, Wilkinson GR, Branch RA, Schenker S (1978) Effect of age and parenchymal liver disease on the disposition and elimination of chlordiazepoxide (Librium). Gastroenterology 75: 479–485PubMedGoogle Scholar
  12. 12.
    Sellers EM, Greenblatt DJ, Giles HG, Naranjo CA, Kaplan H, MacLeod SM (1979) Chlordiazepoxide and oxazepam disposition in cirrhosis. Clin Pharmacol Ther 26: 240–246PubMedGoogle Scholar
  13. 13.
    Ramsay RE, Hammond EJ, Perchalski RJ, Wilder BJ (1979) Brain uptake of phenytoin, phenobarbital, and diazepam. Arch Neurol 36: 535–539PubMedCrossRefGoogle Scholar

Literatur

  1. 1.
    Gladigau V, Vollmer K-O (1977) Beschreibung des pharmakokinetischen Verhaltens von Etozolin und dessen Hauptmetaboliten. Arzneim Forsch Drug Res 27: 1786–1799Google Scholar
  2. 2.
    Greven J, Beckers M, Heidenreich O (1981) Interaktionen von stark wirksamen Diuretika mit der tubulären Sekretion von anionischen endogenen Substanzen und Arzneimitteln. In: Krück F, Schrey A (eds) Diuretika II. Universitätsdruckerei und Verlag Dr. C. Wolf und Sohn, München, S 221–231Google Scholar
  3. 3.
    Greven J, Beckers M, Defrain W, Maywald K, Heidenreich O (1980) Studies with the optically active isomers of the new diuretic drug ozolinone. II. Inhibition by d-ozolinone of furosemide induced diuresis. Pfluegers Arch 384: 61–64CrossRefGoogle Scholar
  4. 4.
    Greven J, Defrain W, Glaser K, Meywald K, Heidenreich O (1980) Studies with the optically active isomers of the new diuretic drug ozolinone. I. Differences in stereoselectivity of the renal target structures of ozolinone. Pfluegers Arch 384: 57–60CrossRefGoogle Scholar
  5. 5.
    Greven J, Heidenreich O (1977) Effect of etozolin on whole kidney function and fluid and electrolyte reabsorption in rat proximal convoluted tubules and loops of Henle. Arzneim Forsch/Drug Res 27: 1755–1757Google Scholar
  6. 6.
    Greven J, Heidenreich O (1978) Effects of ozolinone, a diuretic active metabolite of etozolin, on renal function. 1. Clearance studies in dogs. Naunyn-Schmiedebergs Arch Pharmacol 304: 283–287PubMedCrossRefGoogle Scholar
  7. 7.
    Hengy H, Vollmer K-O, Gladigau V, Kölle E-U (1980) Assay of etozolin and its main metabolite, ozolinone, in plasma by high performance liquid chromatography. Arzneim Forsch/Drug Res 30: 1788–1790Google Scholar
  8. 8.
    v Hodenberg A, Vollmer K-O, Klemisch W, Liedtke B (1977) Metabolismus von Etozolin bei Ratte, Hund und Mensch. Arzneim Forsch/Drug Res 27: 1776–1785Google Scholar
  9. 9.
    Keller E, Hoppe-Seyler G, Mumm R, Schollmeyer P (1981) Influence of hepatic cirrhosis and end-stage renal disease on pharmacokinetics and pharmacodynamics of furosemide. Eur J Clin Pharmacol 20: 27–33PubMedCrossRefGoogle Scholar
  10. 10.
    Knauf HG, Hasenfuß G, Schollmeyer P, Mutschler E (1980) Independence of etozolin elimination of kidney function. Single dose experiments in patients with renal insufficiency. Arzneim Forsch/Drug Res 30: 1791–1793Google Scholar
  11. 11.
    Satzinger G (1977) Struktur-Aktivitätsbetrachtungen zu Etozolin, einem neuartigen Diuretikum. Arzneim Forsch/Drug Res 27: 1742–1745Google Scholar
  12. 12.
    Vollmer K-O, v Hodenberg A, Poisson A, Gladigau V, Hengy H (1977) Resorption, Verteilung, Metabolismus und Ausscheidung von 14C-Etozolin bei Ratte, Hund und Mensch. Arzneim Forsch/Drug Res 27: 1767–1776Google Scholar

Copyright information

© J. F. Bergmann Verlag, München 1983

Authors and Affiliations

  • G. Schwietzer
    • 1
  • A. Distler
    • 1
  • S. Reeck
    • 1
  • H. M. Thiede
    • 1
  • T. Philipp
    • 1
  • B. Krämer
    • 2
  • M. Hausen
    • 2
  • G. Walz
    • 2
  • G. Stankov
    • 2
  • M. Welsch
    • 2
  • G. Krämer
    • 2
  • W. Mäurer
    • 2
  • W. Kübler
    • 2
  • H. B. Steinhauer
    • 3
  • M. Schächtete
    • 3
  • B. Günter
    • 3
  • M. Rachel
    • 3
  • P. Schollmeyer
    • 3
  • J. Grützmacher
    • 4
  • R. Schicht
    • 4
  • R. Schlaeger
    • 5
  • V. Sill
    • 6
  • P. Klooker
    • 7
  • W. Kreusser
    • 7
  • K. Strein
    • 8
  • E. Ritz
    • 7
  • U. Müllerleile
    • 9
  • M. Garbrecht
    • 9
  • P. Hanrath
    • 10
  • K. Bieber
    • 11
  • W. Thier
    • 10
  • D. K. Hossfeld
    • 9
  • J. Nitsch
    • 12
  • M. Manz
    • 12
  • G. Steinbeck
    • 13
  • B. Lüderitz
    • 14
  • C. J. Schuster
    • 15
  • M. H. Weil
    • 16
  • J. L. Vincent
    • 16
  • G. Kreutz
    • 17
  • R. Schulz
    • 17
  • H. Kewitz
    • 17
  • B. Weiß
    • 18
  • K. Donat
    • 18
  • W. J. Ziegler
    • 19
  • W. Londong
    • 20
  • V. Londong
    • 20
  • C. Cederberg
    • 20
  • H. Steffen
    • 20
  • A. Sonnenberg
    • 21
  • I. Kurosinski
    • 21
  • C. Gleiter
    • 22
  • K. H. Antonin
    • 22
  • P. Bieck
    • 22
  • W. E. Hansen
    • 23
  • S. Berti
    • 23
  • C. Piper
    • 24
  • D. Wallem
    • 24
  • N. Brattig
    • 25
  • P. A. Berg
    • 25
  • G.-J. Diao
    • 25
  • O.-E. Brodde
    • 26
  • K. D. Bock
    • 26
  • N. Rohm
    • 27
  • H.-R. Zerkowski
    • 27
  • J. C. Reidemeister
    • 27
  • W. Krone
    • 28
  • U. Carl
    • 28
  • D. Müller-Wieland
    • 28
  • A. Wilke
    • 28
  • H. Greten
    • 28
  • U. F. Legler
    • 29
  • L. Z. Benet
    • 30
    • 41
  • M. Eggstein
    • 29
  • R. Hildebrandt
    • 31
  • U. Gundert-Remy
    • 31
  • A. Laßmann
    • 32
  • W. von Prittwitz
    • 32
  • R. Lissner
    • 32
  • P. B. Beckstein
    • 32
  • W. Schoeppe
    • 32
  • N. Rietbrock
    • 32
  • H. Hoensch
    • 33
  • E. Ohnhaus
    • 33
  • M. André
    • 34
  • J. Grüner
    • 34
  • W. Kirch
    • 35
  • H. Spahn
    • 36
  • H. J. Hutt
    • 37
  • E. Mutschler
    • 38
    • 46
  • E. E. Ohnhaus
    • 37
  • H. D. Kuntz
    • 38
  • U. Ferriferi
    • 38
  • B. May
    • 38
  • J. Epping
    • 39
  • S. Kohler
    • 39
  • H. Heusler
    • 39
  • E. Richter
    • 39
  • U. Klotz
    • 40
  • R. A. BaughmannJr
    • 41
  • N. Massoud
    • 41
  • R. L. Williams
    • 41
  • H. R. Ochs
    • 42
  • B. Verburg-Ochs
    • 42
  • M. Knüchel
    • 42
  • M. Missmahl
    • 43
  • H. Knauf
    • 44
  • U. Wais
    • 45
  • J. Schölmerich
    • 44
  • W. Gerok
    • 44
  1. 1.Med. Klinik, Klinikum SteglitzFU BerlinDeutschland
  2. 2.Abt. III, KardiologieMed. Univ.-Klinik HeidelbergDeutschland
  3. 3.Med. Klinikder der Univ. FreiburgDeutschland
  4. 4.I. Med. Abt.Deutschland
  5. 5.ZentrallaboratoriumDeutschland
  6. 6.I. Med. Abt. Allg. Krankenhaus WandsbekHamburgDeutschland
  7. 7.Sektion NephrologieMed. Univ.-Klinik HeidelbergDeutschland
  8. 8.Boehringer GmbHMannheimDeutschland
  9. 9.Abt. für Onkologie/HämatologieDeutschland
  10. 10.Abt. für KardioangiologieDeutschland
  11. 11.Med. KlinikDeutschland
  12. 12.Abt. für Onkologie/HämatologieUniv.-Krankenhaus EppendorfHamburgDeutschland
  13. 13.Innere Medizin-KardiologieDeutschland
  14. 14.Klinikum GroßhadernMed. Klinik I der Univ. MünchenDeutschland
  15. 15.Innere Medizin-KardiologieMed. Univ.-Klinik BonnDeutschland
  16. 16.II. Med. Universitätsklinik MainzDeutschland
  17. 17.Inst. of Critical Care MedicineUniv. of Southern CaliforniaLos AngelesUSA
  18. 18.Inst. für Klin. Pharmakologie der FU BerlinDeutschland
  19. 19.I. Med. Abt.Allg. Krankenhaus HarburgHamburgDeutschland
  20. 20.BaselSchweiz
  21. 21.Med. Klinik Innenstadt der Univ. MünchenDeutschland
  22. 22.Med. Klinik DUniv. DüsseldorfDeutschland
  23. 23.Humanpharmakolog. Inst. Ciba-GeigyTübingenDeutschland
  24. 24.2. Med. Klinik redits der IsarTU MünchenDeutschland
  25. 25.Med. Klinik der Städt. Kliniken DarmstadtDeutschland
  26. 26.Abt. IIMed. Univ.-Klinik TübingenDeutschland
  27. 27.Abt. Nieren- und HochdruckkrankeMed. Klinik und PoliklinikDeutschland
  28. 28.Abt. Thorax- und Kardiovaskuläre ChirurgieUniv. EssenDeutschland
  29. 29.Med. Kernklinik und PoliklinikUniv.-Krankenhaus EppendorfHamburgDeutschland
  30. 30.Med. Univ.-Klinik TübingenDeutschland
  31. 31.Dept. of Medicine and PharmacyUCSFSan FranciscoUSA
  32. 32.Abt. Klin. PharmakologieMed. Klinik HeidelbergDeutschland
  33. 33.Univ.-Klinik FrankfurtDeutschland
  34. 34.Abt. Allg. Innere MedizinUniv. EssenDeutschland
  35. 35.Med. Univ.-Klinik TübingenDeutschland
  36. 36.Abt. für Allg. Innere MedizinMed. Klinik EssenDeutschland
  37. 37.Pharmakolog. Inst. für NaturwissenschaftenUniv. FrankfurtDeutschland
  38. 38.Med. Klinik der Univ. EssenDeutschland
  39. 39.Abt. Gastroenterologie und HepatologieMed. Univ.-Klinik „Bergmannsheil“BochumDeutschland
  40. 40.Med. Univ.-Klinik WürzburgDeutschland
  41. 41.Margarete-Fischer-Bosch-Inst. für Klinische Pharmakologie StuttgartDeutschland
  42. 42.Dept. of PharmacyUniv. of CaliforniaSan FranciscoUSA
  43. 43.Med. Univ.-Klinik BonnDeutschland
  44. 44.Med. Univ.-Klinik ErlangenDeutschland
  45. 45.Univ.-Kinderklinik FreiburgDeutschland
  46. 46.Pharmakolog. Inst. für NaturwissenschaftlerUniv. FrankfurtDeutschland

Personalised recommendations