Biophysik und Biochemie der Gallesekretion; Angriffspunkte von Störfaktoren

  • G. Paumgartner
Conference paper
Part of the Verhandlungen der Deutschen Gesellschaft für innere Medizin book series (VDGINNERE, volume 85)

Zusammenfassung

Der Gallefluß wird dadurch aufrechterhalten, daß Gallensäuren und vermutlich auch anorganische Anionen von der Leberzelle aktiv aus dem Blut in die Gallenkanalikuli transportiert werden, und daß durch osmotische Filtration Wasser und kleinmolekulare gelöste Substanzen durch die Zonula occludens (,tight junction’) in die Kanalikuli gelangen.„Primargälle” werden durch eine Reihe mehr oder weniger spezifischer Transportmechanismen der Leberzelle zahlreiche gallepflichtige Substanzen sowie Cholesterin und Phospholipide ausgeschieden. Verschiedene Substanzen konnen durch Angriff an der Plasmamembran, den Mikromamenten und den, tight junctions’ der Leberzellen die „fluBerzeugenden“ Mechanismen der Galleproduktion beeinträchtigen und damit eine globale Störung der Gallesekretion (Cholestase) verursachen. Andere Störfaktoren beeinflussen nur die Sekretion einzelner Gallebestandteile (z. B. Cholesterin, Gallensäuren, Phospholipide) und können so zur Bildung lithogener Galle führen. Die neuen Erkenntnisse über die Biophysik und Biochemie der Gallesekretion und Angriffspunkte von Störfaktoren ermöglichen bereits heute eine bessere Erkennung, Prophylaxe und Therapie einzelner Störungen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Accatino, L., Simon, F. R.: Identification and characterization of a bile acid receptor in isolated liver surface membranes. J. Clin. Invest. 57, 496–508 (1976).PubMedCrossRefGoogle Scholar
  2. 2.
    Barnhart, J. L., Combes, B.: Erythritol and man-nitol clearances with taurocholate and secretin-induced cholereses. Am. J. Physiol. 234, 146–156 (1978).Google Scholar
  3. 3.
    Bennion, L., Grundy, S. M.: Risk factors for the development of cholelithiasis in man. N. Engl. J. Med. 299, 1161–1167, 1221–1227 (1978).PubMedCrossRefGoogle Scholar
  4. 4.
    Blitzer, B. L., Boyer, J. L.: Cytochemical localization of Na+, K+-ATPase in the rat hepatozyte. J. Clin. Invest. 62, 1104–1108 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    Bonvicini, F., Gautier, A., Gandiol, D.: Cholesterol in acute cholestasis induced by taurolithocholic acid. Lab. Invest. 38, 487–495 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    Boyer, J. L., Bloomer, J. R.: Canalicular bile secretion in man. Studies utilizing the biliary clearance of 14C-mannitol. J. Clin. Invest. 54, 773–781 (1974).PubMedCrossRefGoogle Scholar
  7. 7.
    Bradley, S. E., Herz, R.: Permselectivity of biliary canalicular membrane in rats: clearance probe analysis. Am. J. Physiol. 235, 570–576 (1978).Google Scholar
  8. 8.
    Di Padova, C, Zuin, M., Bellomi, M., Podda, M.: Choleretic and anticholeretic effects of furosemide in the rat. Ital. J. Gastroenterol. 10, 92–96 (1978).Google Scholar
  9. 9.
    Dubin, M., Maurice, M., Feldmann, G., Erlinger, S.: Phal-loidin-induced cholestasis in the rat: relation to changes in microfilaments. Gastroenterology 75, 450–455 (1978).PubMedGoogle Scholar
  10. 10.
    Forker, E. L.: The effect of estrogen on bile formation in the rat. J. Clin. Invest. 48, 654–663 (1969).PubMedCrossRefGoogle Scholar
  11. 11.
    Forker, E. L.: Mechanisms of hepatic bile formation. Annu. Rev. Physiol. 39, 323–347 (1977).PubMedCrossRefGoogle Scholar
  12. 12.
    Graf, J., Peterlik, M.: Route of sodium transport into bile. Digestion 8, 484 (1973).Google Scholar
  13. 13.
    Hardison, W. G. M., Wood, C. A.: Importance of bicarbonate in bile salt independent fraction of bile flow. Am. J. Physiol. 235, 158–164 (1978).Google Scholar
  14. 14.
    Hays, R. M.: Principles of ion and water transport in the kidney. Hospital practice 13, 79–88 (1978).PubMedGoogle Scholar
  15. 15.
    Kakis, G., Yousef, I. M.: Pathogenesis of lithocholate- and tauro-lithocholate-induced intrahepatic cholestasis in rats. Gastroenterology 75, 595–607 (1978).PubMedGoogle Scholar
  16. 16.
    Klaas-sen, CD.: Biliary excretion. In: Handbook of physiology, Sect. 9: Reactions to environmental agents, pp. 537–553. Maryland: American Physiological Society 1977.Google Scholar
  17. 17.
    Latham, P. S., Kashgarian, M.: The ul-trastructural localization of transport ATPase in the rat liver at non-bile canalicular plasma membranes. Gastroenterology 76, 988–996 (1979).PubMedGoogle Scholar
  18. 18.
    Layden, T. J., Boyer, J. L.: The effect of thyroid hormone on bile salt-independent bile flow and Na+, K+-ATPase activity in liver plasma membranes enriched in bile canaliculi. J. Clin. Invest. 57, 1009–1018 (1976).PubMedCrossRefGoogle Scholar
  19. 19.
    Layden, T., Boyer, J. L.: Taurocholate-induced cholestasis: Taurocholate but not dehydrocholate, reverses cholestasis and bile canalicular membrane injury. Gastroenterology 73, 120–128 (1977).PubMedGoogle Scholar
  20. 20.
    Layden, T. J., Elias, E., Boyer, J. L.: Bile formation in the rat. The role of the paracellular shunt pathway. J. Clin. Invest. 62, 1375–1385 (1978).PubMedCrossRefGoogle Scholar
  21. 21.
    Layden, T., Starr, J.: Evidence that taurodeoxycholate (TDC) induces cholestasis by increasing biliary permeability. Gastroenterology 75, 973a (1978).Google Scholar
  22. 22.
    Lindblad, L., Schersten, T.: Influence of cholic and chenodeoxycholic acid on canalicular bile flow in man. Gastroenterology 70, 1121–1124 (1976).PubMedGoogle Scholar
  23. 23.
    Miyai, K., Richardson, A. L., Mayr, W., Javitt, N. B.: Subcellular pathology of rat liver in cholestasis and choleresis induced by bile salts. Lab. Invest. 36, 249–257 (1977).PubMedGoogle Scholar
  24. 24.
    Montesano, R., Gabbiani, G., Friend, D. S., Perrelet, A., Orci, L.: In vivo modulation of tight junctions in the liver. In: The liver. Preisig, R., Bircher, J., Paumgartner, G. (eds.), pp. 62–69. Aulendorf: Editio Cantor 1976.Google Scholar
  25. 25.
    Nichols, R. J.: Biliary mannitol clearance and bile salt output before and during secretin choleresis in the dog. Gastroenterology 76, 983–987 (1979).Google Scholar
  26. 26.
    Paumgartner, G.: Physiology of bile secretion: Bile aciddependent bile flow. In: Liver and bile. Bianchi, R., Gerok, W., Sickinger, K. (eds.), pp. 45–53. Lancaster: MTP-Press 1977.Google Scholar
  27. 27.
    Paumgartner, G., Reichen, J., von Bergmann, K., Preisig, R.: Elaboration of hepatocytic bile. Bull. N.Y. Acad. Med. 51, 455–471 (1975).PubMedGoogle Scholar
  28. 28.
    Peterlik, M.: Experimented Cholestase durch Nupercain und Har-malin: Wirkung auf die Gallesekretion und auf den aktiven Transport von Gallensauren, Ethacrynsaure und g-Strophantin in der isolierten Leber. Wien. Klin. Wochenschr. 89, 494–501 (1977).PubMedGoogle Scholar
  29. 29.
    Phillips, M. J., Oda, M., Ellen, M. A. K.: Microfilament dysfunction as a possible cause of intrahepatic cholestasis. Gastroenterology 69, 48–58 (1975).PubMedGoogle Scholar
  30. 30.
    Plaa, G. L., Priestly, B. G.: Intrahepatic cholestasis induced by drugs and chemicals. Pharmacol. Rev. 28, 207–273 (1977).Google Scholar
  31. 31.
    Prandi, D., Erlinger, S., Glasinović, J. C, Dumont, M.: Canalicular bile production in man. Eur. J. Clin. Invest. 5, 1–6 (1975).PubMedCrossRefGoogle Scholar
  32. 32.
    Reichen, J., Paumgartner, G.: Uptake of bile acids by perfused rat liver. Am. J. Physiol. 231, 734–742 (1976).PubMedGoogle Scholar
  33. 33.
    Reichen, J., Paumgartner, G.: Relationship between bile flow and Na+, K+-Adenosinephosphatase in liver plasma membranes enriched in bile canaliculi. J. Clin. Invest. 60, 429–434 (1977).PubMedCrossRefGoogle Scholar
  34. 34.
    Reichen, J., Paumgartner, G.: Inhibition of hepatic Na+, K+-adenosine triphosphatase in taurolithocholate induced cholestasis in the rat. Experientia (im Druck).Google Scholar
  35. 35.
    Samuels, A. M., Carey, M. C: Effects of chlorpromazine hydrochloride and its metabolites on Mg2+- and Na+, K+-ATPase activities of canalicular-enriched rat liver plasma membranes. Gastroenterology 74, 1183–1190 (1978).PubMedGoogle Scholar
  36. 36.
    Schersten, T., Nilsson, S., Cahlin, E., Filipson, M., Brodin-Persson, G.: Relationship between the biliary excretion of bile acids and the excretion of water, lecithin, and cholesterol in man. Eur. J. Clin. Invest. 1, 242 (1971).PubMedGoogle Scholar
  37. 37.
    Schwarz, L. R., Burr, R., Schwenk, M., Pfaff, E., Greim, H.: Uptake of taurocholic acid into isolated rat-liver cells. Eur. J. Biochem. 55, 617–623 (1975).PubMedCrossRefGoogle Scholar
  38. 38.
    Schwarz, L. R., Schwenk, M., Pfaff, E., Greim, H.: Cholestatic steroid hormones inhibit taurocholate uptake into isolated rat hepatozytes. Biochem. Pharmacol. 26, 2433–2437 (1977).PubMedCrossRefGoogle Scholar
  39. 39.
    Silva, P., Stoff, J., Field, M., Fine, L., Forrest, J. N., Epstein, F. H.: Mechanism of active chloride secretion by shark rectal gland: role of Na-K-ATPase in chloride transport. Am. J. Physiol. 233, 298–306 (1977).Google Scholar
  40. 40.
    Simon, F. R., Sinensky, M., Kern, F., Davis, R. A.: Reversal of ethinyl estradiol (EE) induced cholestasis: correlative changes in liver surface membrane. Clin. Res. 25, 318a (1977).Google Scholar
  41. 41.
    Simon, F. R., Sutherland, E., Accatino, L.: Stimulation of hepatic sodium and potassium-activated adenosine triphosphatase activity by phenobarbital. Its possible role in regulation of bile flow. J. Clin. Invest. 59, 849–861 (1977).PubMedCrossRefGoogle Scholar
  42. 42.
    Utili, R., Abernathy, C. O., Zimmerman, H. J.: Inhibition of Na+, K+-adenosinetriphosphata-se by endotoxin: A possible mechanism for endotoxin-induced cholestasis. J. Infect. Dis. 136, 583–587 (1977).PubMedCrossRefGoogle Scholar
  43. 43.
    Wheeler, H. O., King, K. K.: Biliary excretion of lecithin and cholesterol in the dog. J. Clin. Invest. 51, 1337 (1972).PubMedCrossRefGoogle Scholar

Copyright information

© J. F. Bergmann Verlag, München 1979

Authors and Affiliations

  • G. Paumgartner
    • 1
  1. 1.Inst. für Klin. PharmakologieUniv. BernDeutschland

Personalised recommendations