Antibakterielle Abwehrmechanismen

  • H. Hahn
  • L. H. Block
Conference paper
Part of the Verhandlungen der Deutschen Gesellschaft für innere Medizin book series (VDGINNERE, volume 85)

Zusammenfassung

Die erfolgreiche Abwehr von Infektionen durch Mikroorganismen hängt von Resistenz und Immunität ab. Resistenz ist nicht antigenspezifisch; sie wird in ihrer Ausprägung durch genetische Faktoren und umweltbedingte Einflüsse wie Ernährung, Überanstren-gung und Krankheit bestimmt. Hingegen bedeutet Immunität die Abwehrleistung, welche auf dem Vorhandensein von Prodiikten des Immunsystems beruht. Immunität ist er-worben, da sie erst nach Kontakt mit Antigenen des Mikroorganismus entsteht und im Gegensatz zur Resistenz spezifisch ist.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Metschnikow, E.: Leçons sur la pathologie comparée l’inflammation. Paris, 1892.Google Scholar
  2. 2.
    van Furth, R. (ed.): Mononuclear phagocytes. Oxford, Edinburgh: Blackwell Scientific Publications 1970.Google Scholar
  3. 3.
    Bainton, D. F.: Differentiation of human neutrophilic granulocytes: Normal and abnormal. In: The granulocyte: Function and clinical utilization. Greenwalt, T. J., Jamieson, G. A. (eds.), pp. 1–27. New York: Alan Liss Inc. 1977.Google Scholar
  4. 4.
    Baggiolini, M., de Duve, C, Masson, P. L.: Association of lactoferrin with specific granules in rabbit heterophil leukocytes. J. Exp. Med. 131, 559–570 (1970).PubMedCrossRefGoogle Scholar
  5. 5.
    Baggiolini, M., Hirsch, J. G., de Duve, C: Resolution of granules from rabbit heterophil leukocytes into distinct populations by zonal sedimentation. J. Cell Biol. 40, 529 (1969).PubMedCrossRefGoogle Scholar
  6. 6.
    Cartwright, G. E., Athens, J. W., Wintrobe, M. D.: The ki­netics of granulopoesis in man. Blood 24, 780–803 (1964).PubMedGoogle Scholar
  7. 7.
    Wilkinson, P. C: The role of chemotaxis in inflammatory reactions. In: Chemotaxis and inflammation, pp. 148–166. London: Churchill Livingstone 1974.Google Scholar
  8. 8.
    Ward, P. A., Becker, E. L.: Biology of leukotaxis. Rev. Physiol. Biochem. Pharmacol. 77, 125–148 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    Stossel, T. P.: The mechanism of leukocyte locomotion. In: Leukocyte chemotaxis. Gallin, J. I., Quie, P. G. (eds.), pp. 143–160. New York: Raven Press.Google Scholar
  10. 10.
    Huber, H., Weiner, H.: Binding of immune complexes to human macrophages: The role of membrane receptor sites. In: Activation of mac­rophages. Wagner, W.-H., Hahn, H. (eds.), pp. 54–62. Amsterdam, New York: Excerpta Medica/Ameri-can Elsevier 1974.Google Scholar
  11. 11.
    Wellek, B., Hahn, H., Opferkuch, W.: Quantitative contributions of IgG, IgM, and C3 to erythrophagocytosis and rosette formation by peritoneal macrophages, and anti-opsonin activity of dextran sulfate 500. Eur. J. Immunol. 5, 378–381 (1975).CrossRefGoogle Scholar
  12. 12.
    Hirsch, J. G.: Cinematographic ob­servations on granule lysis in polymorphonuclear leukocytes during phagocytosis. J. Exp. Med. 116, 827 (1962).PubMedCrossRefGoogle Scholar
  13. 13.
    Stossel, T. P., Hartwig, J. H.: Interaction of actin, myosin and a new actin-binding protein of rabbit pulmonary macrophages. J. Cell Biol. 68, 602–619 (1976).PubMedCrossRefGoogle Scholar
  14. 14.
    Bainton, D. F.: Sequential degranu-lation of the two types of polymorphonuclear leukocyte granules during phagocytosis of microorganisms. J. Cell Biol. 58, 249–264 (1973).PubMedCrossRefGoogle Scholar
  15. 15.
    Stossel, T. P., Pollard, T. D., Mason, R. J.: Isolation and properties of phagocytic vesicles from polymorphonuclear leukocytes. J. Clin. Invest. 50, 1745–1757 (1971).PubMedCrossRefGoogle Scholar
  16. 16.
    Babior, B. M.: Oxygen-dependent microbial killing by phagocytes. N. Engl. J. Med. 298, 659–668, 721–725 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    de Chatelet, L. R.: Initiation of respiratory burst in human polymorphonuclear neutrophils: a critical review. J. Reticuloendothel. Soc. 24, 73–91 (1978).Google Scholar
  18. 18.
    Bainton, D. F., Farquhar, M. G.: Difference in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. II. Cytochemistry and electron microscopy of bone marrow cells. J. Cell Biol. 39, 299–317 (1968).PubMedCrossRefGoogle Scholar
  19. 19.
    Har­rison, J E, Schultz, J.: Studies on the chlorinating activity of myeloperoxidase. J. Biol. Chem. 251, 1371–1374 (1976).Google Scholar
  20. 20.
    Klebanoff, S. J.: Iodination of bacteria: a bactericidal mechanism. J. Exp. Med. 126, 1063–1078 (1967).PubMedCrossRefGoogle Scholar
  21. 21.
    Beauchamp, C, Fridovich, I.: A mechanism for the production of ethylene from methional: the generation of hydroxyl radical by xanthine oxidase. J. Biol. Chem. 245, 4641–4646 (1970).PubMedGoogle Scholar
  22. 22.
    Klebanoff, S. J.: Antimicrobial systems of the polymorphonuclear leukocyte. In: The phago­cytic cell in host resistance. Bellanti, J. A., Dayton, D. H. (eds.), pp. 45–60. New York: Raven Press 1975.Google Scholar
  23. 23.
    Rosen, H., Klebanoff, S. J.: Formation of singlet oxygen by the myeloperoxidase-mediated an­timicrobial system. J. Biol. Chem. 252, 4803–4810(1977).PubMedGoogle Scholar
  24. 24.
    McCord, J. M., Fridovich, I.: The biology and pathology of oxygen radicals. Ann. Intern. Med. 89, 122–127 (1978).PubMedGoogle Scholar
  25. 25.
    Spitznagel, J. K.: Bacterici­dal mechanisms of the granulocyte. In: The granulocyte: Function and clinical utilization. Greenwalt, T. J., Jamieson, G. A. (eds.), pp. 103–139. New York: Alan Liss Inc. 1977.Google Scholar
  26. 26.
    Mandell, G. L.: Intra-phagosomal pH of human polymorphonuclear neutrophils. Proc. Soc. Exp. Biol. Med. 447–449 (1970).Google Scholar
  27. 27.
    Strominger, J. L., Tipper, D. J.: Structure of bacterial cell walls: the lysozyme substrate. In: Lysozy-me. Osserman, E. F., Canfield, R. E., Beychok, S. (eds.), pp. 169–184. New York: Academic Press 1974.Google Scholar
  28. 28.
    Hirsch, J. G.: Phagocytin, a bactericidal substance from polymorphonuclear leukocytes. J. Exp. Med. 103, 589–611 (1956).PubMedCrossRefGoogle Scholar
  29. 29.
    Skarnes, R. C, Watson, D. W.: Characterization of leukin, an antibacterial factor from leukocytes active against grampositive pathogens. J. Exp. Med. 104, 829–845 (1956).PubMedCrossRefGoogle Scholar
  30. 30.
    Klebanoff, S. J., Harmon, L. B.: Antimicrobial systems of mononuclear phagocytes. In: Mononuclear pha­gocytes, van Furth, R. (ed.), pp. 507–545. Oxford: Blackwell Scientific Publications 1975.Google Scholar
  31. 31.
    Stossel, T. P., Mason, R. J., Pollard, T. D.: Isolation and properties of phagocytic vesicles. II. Alveolar macrophages. J. Clin. Invest. 51, 604–614 (1972).PubMedCrossRefGoogle Scholar
  32. 32.
    Zinsser, H.: Bacterial allergies and tissue reactions. Proc. Soc. Exp. Biol. Med. 22, 35 (1925).Google Scholar
  33. 33.
    Lurie, M. B.: Resistance to tuberculosis. Cambridge, Mass.: Harvard University Press 1964.Google Scholar
  34. 34.
    North, R. J.: The concept of the activated macrophage. J. Immunol. 121, 806–809 (1978).PubMedGoogle Scholar
  35. 35.
    Rich, A. R.: The pathogenesis of tuberculosis. 2. ed. Springfield, 111.: Thomas 1951.Google Scholar
  36. 36.
    Mackaness, G. B., Blanden, R. V.: Cellular immunity. Progr. Allergy 11, 89 (1967).Google Scholar
  37. 37.
    Hahn, H.: Requirement for a bone marrow-derived component in the expression of cell-mediated antibacterial immuni­ty. Infect. Immun. 11, 949–954 (1975).PubMedGoogle Scholar
  38. 38.
    Hahn, H.: Effects of dextran sulfate 500 on cell-mediated re­sistance to infection with listeria monocytogenes in mice. Infect. Immun. 10, 1105–1109 (1974).PubMedGoogle Scholar
  39. 39.
    Reif, A. E., Allen, J. M. V.: The AKR thymic antigen and its distribution in leukemias and nervous tissues. J. Exp. Med. 120, 413 (1964).PubMedCrossRefGoogle Scholar
  40. 40.
    Cantor, H., Boyse, E. A.: Lymphocytes as models for study of mammalian cel­lular differentiation. Immunol. Rev. 33, 105 (1977).PubMedCrossRefGoogle Scholar
  41. 41.
    North, R. J.: Importance of thymus derived lym­phocytes to cell mediated immunity to infection. Cell. Immunol. 7, 166 (1973).PubMedCrossRefGoogle Scholar
  42. 42.
    Kaufmann, S. H. E., Simon, M. M., Hahn, H.: Unveröffentlichte Befunde.Google Scholar
  43. 43.
    David, J. R., David, R. R.: Cellular hy­persensitivity and immunity. Progr. Allergy 16, 300 (1972).CrossRefGoogle Scholar

Copyright information

© J. F. Bergmann Verlag, München 1979

Authors and Affiliations

  • H. Hahn
    • 1
  • L. H. Block
    • 1
  1. 1.Inst. für Med. Mikrobiologie der FU BerlinMed. Poliklinik der Univ. ZürichDeutschland

Personalised recommendations