Advertisement

Die Wirkung von 5-Fluoruridin in Kombination mit Antipyrimidinen in Tumorzellen

  • A. Holstege
  • B. Herrmann
  • T. Anukarahanonta
  • J. Pausch
  • D. Keppler
Conference paper
Part of the Verhandlungen der Deutschen Gesellschaft für innere Medizin book series (VDGINNERE, volume 85)

Zusammenfassung

1. Bei der Chemotherapie von Tumoren wurde 5-Fluoruridin (FUrd) klinisch bisher relativ selten angewandt [6], obwohl es bei einigen experimentellen Tumoren [6,9] stärker wachstumshemmend wirkt als das häufig angewandte 5-Fluoruracil (FUra). Unsere Untersuchungen an Rattenhepatomzellen und Mammatumorzellen der Maus mit einer Kombination von FUrd und anderen Antipyrimidinen, insbesondere mit Aminozuckern und Inhibitoren der De novo-Pyrimdinnukleotidsynthese dienen dem Ziel, eine wirksamere Hemmung des Tumorzellwachstums und eine gesteigerte Selektivität der Chemotherapie zu erreichen [14,15]. Die Selektivität für das hepatozelluläre Karzinom wird gesteigert durch die Ausnutzung spezifischer Tumoreigenschaften: Die in diesem Gewebe nachgewiesene Galaktosamin (GalN)-Wirkung [11, 12, 17] und die höhere Uridinkinaseaktivität in den Tumorzellen [25] machen diese empfindlieher für FUrd und andere Uridin- und Cytidinanaloge; die Bildung und intrazelluläre Anreicherung von Fluoruridindiphosphat(FUDP)aminozuckern [10] können zu einer Verlängerung der zytostatischen Wirkung von FUrd beitragen (Abb. 1).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Anderson, E. P., Brockman, R. W.: Feedback inhibition of uridine kinase by cytidine triphosphate and uridine triphosphate. Biochim. Biophys. Acta 91, 380–386 (1964).PubMedGoogle Scholar
  2. 2.
    Anukarahanonta, T., Holstege, A., Herrmann, B., Keppler, D.: Enhancement of 5-fluorouridine action in hepatoma cells by galactosamine-induced uridine triphosphate deficiency. Hoppe-Seylers Z. Physiol. Chem. 360, 225 (1979).Google Scholar
  3. 3.
    Brdar, B., Rifkin, D. B., Reich, E.: Studies of Rous sarcoma virus. Effects of nucleoside analogues on virus synthesis. J. Biol. Chem. 248, 2397–2408 (1973).PubMedGoogle Scholar
  4. 4.
    Cadman, E., Eiferman, F., Heimer, R., Davis, L.: Pyrazofurin enhancement of 5-azacytidine antitumor activity in L5178Y and human leukemia cells. Cancer Res. 38, 4610–4617 (1978).PubMedGoogle Scholar
  5. 5.
    Cohen, S. S., Flaks, J. G., Barner, H. D., Loeb, M. R., Lichtenstein, J.: The mode of action of 5-fluorouracil and its derivatives. Proc. Natl. Acad. Sci. USA 44, 1004–1012 (1958).PubMedCrossRefGoogle Scholar
  6. 6.
    Currie, V. E., Burchenal, J. H., Sykes, M. P., Clarkson, B. D., Krakoff, I. H.: Animal and clinical studies on 5-fluorouridine (FUR). Proc. Am. Assoc. Cancer Res. 16, 188 (1975).Google Scholar
  7. 7.
    Handschumacher, R. E., Calabre-si, P., Welch, A. D., Bono, V., Fallon, H., Freilll, E.: Summary of current information on 6-azauridine. Cancer Treat. Rep. 21, 1–18 (1962).Google Scholar
  8. 8.
    Heidelberger, C: Fluorinated pyrimidines and their nucleosides. In: Antineoplastic and immunosuppressive agents, Part II. Sartorelli, A. C, Johns, D. G. (eds.), pp. 193–231. Berlin, Heidelberg, New York: Springer 1975.Google Scholar
  9. 9.
    Heidelberger, C, Griesbach, L., Cruz, O., Schnitzer, R. J., Grunberg, E.: Fluorinated pyrimidines IV. Effects of 5-fluorouridine and 5-fluoro-2’-deoxyuridine on transplanted tumors. Proc. Soc. Exp. Biol. Med. 97, 470–475 (1958).PubMedGoogle Scholar
  10. 10.
    Holstege, A., Herrmann, B., Keppler, D.: Increased formation of nucleotide derivatives of 5-fluorouridine in hepatoma cells treated with inhibitors of pyrimidine synthesis and D-galactosamine. FEBS Lett. 95, 361–365 (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    Keppler, D.: Consequences of uridine triphosphate deficiency in liver and hepatoma cells. In: Pathogenesis and mechanisms of liver cell necrosis. Keppler, D. (ed.), pp. 87–101. Lancaster: MTP Press/Baltimore: University Park Press 1975.CrossRefGoogle Scholar
  12. 12.
    Keppler, D.: Uridine triphosphate deficiency, growth inhibition, and death in ascites hepatoma cells induced by a combination of pyrimidine biosynthesis inhibition with uridylate trapping. Cancer Res. 37, 911–917 (1977).PubMedGoogle Scholar
  13. 13.
    Keppler, D.: Aspartate carbamoyl-transferase inhibiton and uridylate trapping result in a synergistic depression of uridine triphosphate in hepatoma cells. FEBS Lett. 73, 263–266 (1977).PubMedCrossRefGoogle Scholar
  14. 14.
    Keppler, D.: Approaches to the chemotherapy of hepatomas. In: Primary liver tumors. Remmer, H., Bolt, H. M., Bannasch, P., Popper, H. (eds.), pp. 485–492. Lancaster: MTP Press 1978.Google Scholar
  15. 15.
    Keppler, D., Pausch, J., Gerok, W.: Zur selektiven Chemotherapie des hepatozellularen Karzinoms. Verh. Dtsch. Ges. Inn. Med. 84, 606–609 (1978).PubMedGoogle Scholar
  16. 16.
    Keppler, D., Rudi-gier, J., Bischoff, E., Decker, K.: The trapping of uridine phosphates by D-galactosamine, D-glucosamine, and 2-deoxy-D-galactose. A study on the mechanism of galactosamine hepatitis. Eur. J. Biochem. 17, 246–253 (1970).PubMedCrossRefGoogle Scholar
  17. 17.
    Keppler, D., Smith, D. F.: Nucleotide contents of ascites hepatoma cells and their changes induced by D-galactosamine. Cancer Res. 34, 705–711 (1974).PubMedGoogle Scholar
  18. 18.
    Klein, G.: Development of a spectrum of ascites tumors. Exp. Cell Res. 2, 291–294 (1951).CrossRefGoogle Scholar
  19. 19.
    Plagemann, P. G. W., Marz, R., Wohl-hueter, R. M.: Uridine transport in Novikoff rat hepatoma cells and other cell lines and its relationship to uridine phosphorylation and phosphorolysis. J. Cell. Physiol. 97, 49–72 (1978).PubMedCrossRefGoogle Scholar
  20. 20.
    Rustum, Y. M.: High-pressure liquid chromatography I. Quantitative separation of purine and pyrimidine nucleosides and bases. Anal. Biochem. 90, 289–299 (1978).PubMedCrossRefGoogle Scholar
  21. 21.
    Smith, D. F., Walborg, E. F., Jr., Chang, J. P.: Establishment of a transplantable ascites variant of a rat hepatoma induced by 3’-methyl-4-dimethylaminoazobenzene. Cancer Res. 30, 2306–2309 (1970).PubMedGoogle Scholar
  22. 22.
    Stickgold, R. A., Neuhaus, F. C: On the initial stage in peptidoglycan synthesis. Effect of 5-fluorouracil substitution on phospho-N-acetylmuramylpentapeptide translocase (Uridine 5’-Phosphate). J. Biol. Chem. 242, 1331–1337 (1967).PubMedGoogle Scholar
  23. 23.
    Swyryd, E. A., Seaver, S. S., Stark, G. R.: N-(Phosphonacetyl)-L-aspartate, a potent transition state analog inhibitor of aspartate transcarbamylase, blocks proliferation of mammalian cells in culture. J. Biol. Chem. 249, 6945–6950 (1974).PubMedGoogle Scholar
  24. 24.
    Tomasz, A., Borek, E.: The mechanism of bacterial fragility produced by 5-fluorouracil: The accumulation of cell wall precursors. Proc. Natl. Acad. Sci. USA 46, 324–327 (1960).PubMedCrossRefGoogle Scholar
  25. 25.
    Weber, G., Shiotani, T., Kizaki, H., Tzeng, D., Williams, J. C, Gladstone, N.: Biochemical stragety of the genome as expressed in regulation of pyrimidine metabolism. Adv. Enzyme Regul. 16, 3–19 (1978).CrossRefGoogle Scholar

Copyright information

© J. F. Bergmann Verlag, München 1979

Authors and Affiliations

  • A. Holstege
    • 1
  • B. Herrmann
    • 1
  • T. Anukarahanonta
    • 1
  • J. Pausch
    • 2
  • D. Keppler
    • 3
  1. 1.Biochem. Inst. der Univ.Deutschland
  2. 2.Med. Klinik der Univ.Deutschland
  3. 3.Biochem. Inst. der Univ. FreiburgDeutschland

Personalised recommendations