Advertisement

Untersuchungen zur Enzymreifung von α-Glucosidasen an der Dünndarmschleimhaut von Mensch und Ratte

  • S. Gutschmidt
  • W. Kaul
  • H. Menge
  • E. O. Riecken
Conference paper
Part of the Verhandlungen der Deutschen Gesellschaft für innere Medizin book series (VDGINNERE, volume 85)

Zusammenfassung

Die funktionelle Interpretation bioptisch gewonnenen Dünndarmmaterials kann durch Einsatz der Cytospektrophotometrie [8] gegenüber einer rein morphologischen Analyse [43] erheblich erweitert werden. Ausgehend von eigenen Befunden bei der Sprue [24], welche eine sekundäre α-Glucosidasenaktivitätsverminderung aufgrund eines quantitativ enzymhistochemisch [25] faßbaren Vmax- und Km-Effektes belegten, untersuchten wir die Veränderungen dieser enzymkinetischen Charakteristika „in situ“ während der Enterocytenreifung im Verlauf von Krypte und Zotte an menschlichem Biopsiematerial und im proximalen. mittleren und distalen Rattendünndarm. Ais weiterer Funktionsparameter diente der RNA-Gehalt pro Flächeneinheit im apikalen Enterocytencytoplasma, dessen basal-apikaler und proximal-distaler Gradient im Vergleich zum Nucleinsäuregehalt des Zellkerns mikrodensitometrisch ermittelt wurde. Auf cellulärer Ebene falßbare Ribonucleinsäureveränderungen wurden im Rahmen pathologischer Zustandsbilder bisher z. B. Für die Magenschleimhaut im Rahmen der Ulcerogenese [32, 361, Für die präkanzerös veränderte Rectumschleimhaut [15], bei Hypoxie der Herzmuskelzelle [58] und Für die Dünndarmschleimhaut bei Leberzirrhose [50] beschrieben.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Asp, N. G., Gudmand-Höyer, B., Andersen, B., Berg, N. O., Dahlquist, A.: Distribution of disaccharidases, alkaline phosphatase and some intracellular enzymes along the human small intestine. Scand. J. Gastroenterol. 10, 647–651 (1975).PubMedGoogle Scholar
  2. 2.
    de Both, N. J., Plaisier, H.: The influence of changing cell kinetics on functional differentiation in the small intestine of the rat. A study of enzymes involved in carbohydrate metabolism. J. Histochem. Cytochem. 22, 352–360 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    de Both, N. J., van Dongen, J. M., van Hofwegen, B., Keulemans, J., Visser, W. J., Galgaard, M.: The influence of various cell kinetic conditions on functional differentiation in the small intestine of the rat. A study of enzymes bound to subcellularorganelles. Dev. Biol. 38, 119–137 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    Brindley, D. W., Hübscher, D.: The intracellular distribution of enzymes catalyzing the biosynthesis of glycerides in the intestinal mucosa. Biochim. Biophys. Acta 106, 495–509 (1965).PubMedGoogle Scholar
  5. 5.
    Brown, A. L., Jr.: Microvilli of the human jejunal epithelial cell. J. Cell Biol. 12, 623–627 (1962).PubMedCrossRefGoogle Scholar
  6. 6.
    Bullough, W. S., Laurence, E. B., Iverson, O. H. et al.: The vertebrate epidermal chalone. Nature 214, 578–580 (1967).CrossRefGoogle Scholar
  7. 7.
    Casley-Smith, J. R.: the identification of chylomicrons and hipoproteins in tissue sections and their passage into jejunal lacteals. J. Cell Biol. 15, 259–277 (1962).PubMedCrossRefGoogle Scholar
  8. 8.
    Caspersson, T.: Quantitative cytochemical methods for the study of cell metabolism. Experientia 11,45–88 (1955).PubMedCrossRefGoogle Scholar
  9. 9.
    Cheng, H., Leblond, C. P.: Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am. J. Anat. 141,461–480 (1974).Google Scholar
  10. 10.
    Cheng, H.: Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. II. Mucous cells. Am. J. Anat. 141, 481–502 (1974).Google Scholar
  11. 11.
    Cheng, H., Leblond, C. P.: Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. III. Enteroendocrine cells. Am. J. Anat. 141, 503–520 (1974).PubMedCrossRefGoogle Scholar
  12. 12.
    Cheng, H.: Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. IV. Paneth cells. Am. J. Anat. 141, 521–536 (1974).Google Scholar
  13. 13.
    Cheng, H., Leblond, C.: Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am. J. Anat. 141, 537–562 (1974).Google Scholar
  14. 14.
    Clarke, R. M.: The effect of growth and of fasting on the number of villi and crypts in the small intestine of the albino rat. J. Anat. 112, 27 (1972).PubMedGoogle Scholar
  15. 15.
    Deschner, E., Lipkin, M.: Study of human rectal epithelial cells in vitro. III. RNA, protein and DNA-synthesis in polyps and adjacent mucosa. J. Natl. Cancer Inst. 44, 175–185 (1970).PubMedGoogle Scholar
  16. 16.
    v. Dongen, J. M., Visser, W. J., Daems, W. Th., Galjaard, M.: The relation between cell proliferation, differentiation and ultrastructural development in rat intestinal epithelium. Cell Tissue Res. 174, 183–199 (1976).PubMedCrossRefGoogle Scholar
  17. 17.
    v. Dongen, J. M., Kooyman, J., Vissen, W. J., Holt, S. J., Galjaard, M.: The effect of increased crypt cell proliferation on the activity and subcellular localization of esterases and alkaline phosphatase in the rat small intestine. Histochem. J. 9,61–75 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    Einarson, L.: On the theory of gallocyanin chromalum staining and its application for quantitative estimation of basophilia. A selective staining of exquisite progressivity. Acta Pathol. Microbiol. Scand. 28, 82–102 (1951).CrossRefGoogle Scholar
  19. 19.
    Flax, M. H., Himes, M. H.: Microspectrophotometric analysis of metachromatic staining of nucleic acids. Physiol. Zool. 25, 297 (1952).Google Scholar
  20. 20.
    Fortin-Margana, R., Horwitz, R., Herbst, J. J., Ketchmer, N.: Intestinal enzymes: Indicators of proliferation and differentiation in the jejunum. Science 167, 1627–1628 (1970).CrossRefGoogle Scholar
  21. 21.
    Galjaard, M., Buys, J., v. Duuren, M., Giesen, J.: A quantitative histochemi-cal study of intestinal mucosa after x-irradiation. J. Histochem. Cytochem. 18, 291–301 (1970).PubMedCrossRefGoogle Scholar
  22. 22.
    Galjaard, M., van der Meer-Fieggen, W., Giesen, J.: Feedback control by functional villus cells on cell proliferation and maturation in intestinal epithelium. Exp. Cell Res. 73, 197–207 (1972).PubMedCrossRefGoogle Scholar
  23. 23.
    Ghadially, F. N.: Endoplasmic reticulum. In: Ultrastructural pathology of the cell. Ghadially, F. N. (ed.),pp. 209–282. London, Boston: Butterworth 1975.Google Scholar
  24. 24.
    Gutschmidt, S., Kaul, W., Menge, H., Lorenz-Meyer, H., Riecken, E. O.: Kinetische Untersuchungen am Schnitt zur Saccharase-Aktivität im Jejunum Dünndarmge-sunder und Sprue-Kranker (Abstract). Z. Gastroenterol., Sonderheft zur 33. Tagung der Deutschen Gesell-schaft für Verdauungs-und Stoffwechselkrankheiten, S. 118. Hamburg, 1978.Google Scholar
  25. 25.
    Gutschmidt, S., Kaul, W., Riecken, E. O.: Eine mikrodensitometrische Methode zur Charakterisierung von α-Glucosidasen im Bürstensaum von Rattenjejunum. Histochemistry (im Druck, 1979a).Google Scholar
  26. 26.
    Gutschmidt, S., Kaul, W., Menge, H., Riecken, E. O.: Enzymhistochemische Untersuchungen nach proximaler Dünndarmresektion bei der Ratte. (In Vorbereitung, 1979b).Google Scholar
  27. 27.
    Gutschmidt, S.: Einfluß verschiedener Gewebevorbehandlun-gen auf die Absorptionsspektren von Azofarbstoffen und Gallocyaninchromalaun in Kryostatschnitten von Rattendünndarm. (In Vorbereitung, 1979c).Google Scholar
  28. 28.
    Gutschmidt, S., Kaul, W.: Nucleinsäuregehalt im Kern und Cytoplasma des Rattendünndarmes bei normaler und gesteigerter Kryptzellproliferation.(In Vorbereitung, 1979d).Google Scholar
  29. 29.
    Harrison, D. D., Webster, H. L.: Proximal to distal variations in enzymes of the rat intestine. Biochim. Biophys. Acta 244, 432–436 (1971).PubMedCrossRefGoogle Scholar
  30. 30.
    Horobin, R. W., Murgatroyd, L. B.: The composition and properties of gallocyanin-chromealum stains. Histochem. J. 1, 36–54 (1968).CrossRefGoogle Scholar
  31. 31.
    Iemhoff, W. G. J., Hülsemann, W. C: Development of mitochondrial enzyme activities in rat-small-intestinal epithelium. Eur. J. Biochem. 23, 429–434 (1971).PubMedCrossRefGoogle Scholar
  32. 32.
    Imondi, A. R., Balis, M. B., Lipkin, M.: Nucleic acid metabolism in the gastrointestinal tract of the mouse during fasting and restraint stress. Exp. Mol. Pathol. 9, 339 (1968).PubMedCrossRefGoogle Scholar
  33. 33.
    Imondi, A. R., Balis, M. E., Lipkin, M.: Changes in enzyme levels accompanying differentiation of intestinal epithelial cells. Exp. Cell Res. 58,323–330 (1969).PubMedCrossRefGoogle Scholar
  34. 34.
    Imondi, A. R., Lipkin, M., Balis, M. E.: Enzyme and template stability as regulatory mechanism in differentiating intestinal epithelial cells. J. Biol. Chem. 245, 2194–2198 (1970).PubMedGoogle Scholar
  35. 35.
    Kiefer, G.: Recent developments in gallocyanine-chrome alum staining. In: Introduction to quantitative cytochemistry II. Wied, G. L., Balis, G. F.(eds.), pp. 199–208. New York, London: Academic Press 1970.Google Scholar
  36. 36.
    Kim, Y., Kerr, J. R., Lipkin, M.: Cell proliferation during the development of stress erosions in mouse stomach. Nature 215, 1180–1181 (1967).PubMedCrossRefGoogle Scholar
  37. 37.
    Kurland, C. G.: Aspects of ribosome structural function. In: Molecular mechanism of protein biosynthesis. Weissbach, H., Pestka, S. (eds.), pp. 81–116. New York, San Francisco, London: Academic Press 1977.Google Scholar
  38. 38.
    Miller, D., Crane, R. K.: The digestive function of the epithelium of the small intestine. II. Localization of disaccharide hydrolysis in the isolated brush border portion of intestinal epithelial cells. Biochim. Biophys. Acta 52,293–298 (1961).PubMedCrossRefGoogle Scholar
  39. 39.
    Mitchell, J. P.: Quantitative microspectrophotometry of RNA in plant tissue. Histochem. J. 1, 106–123 (1968).CrossRefGoogle Scholar
  40. 40.
    Moog, F., Etzler, E. M., Grey, R. D.: The differentiation of alkaline phosphatase in the intestine. J. Cell Biol. 32, 1 (1967).CrossRefGoogle Scholar
  41. 41.
    Nordström, C., Dahlquist, A., Josefsson, L.: Quantitative determination of enzymes in different parts of the villi and crypts of the rat small intestine. Comparison of alkaline phosphatase, disaccharidases and dipeptidases. J. Histochem. Cytochem. 15, 713–721 (1968).CrossRefGoogle Scholar
  42. 42.
    Nordström, C., Dahlquist, A.: Quantitative distribution of some enzymes along the villi and crypts of human small intestine. Scand. J. Gastroenterol. 8, 407–416 (1973).Google Scholar
  43. 43.
    Otto, H. F., Gebbers, J. O.: Die Dünndarmbiopsie. Baden-Baden, Brüssel, Köln, New York: Witzstrock 1977.Google Scholar
  44. 44.
    Palade, G. E.: J. Biophys. Biochem. Cytol. 1, 59 (1955).PubMedCrossRefGoogle Scholar
  45. 45.
    Palade, G. E.: In: Frontiers in cytology. Palay, S. L. (ed.), p. 283. New Haven, Conn.: Yale University Press 1958.Google Scholar
  46. 46.
    Palay, S. L., Karlin, L. J.: An electron microscopic study of the intestinal villus. I. The fasting animal. J. Biophys. Biochem. Cytol. 5, 363–372 (1959a).CrossRefGoogle Scholar
  47. 47.
    Palay, S. L., Karlin, L. J.: An electron microscopic study of the intestinal villus. II. The pathway of fat absorption. J. Biophys. Biochem. Cytol. 5, 373–384 (1959b).PubMedCrossRefGoogle Scholar
  48. 48.
    Padykula, H. A.: Recent functional interpretations of intestinal morphology. Fed. Proc. 21, 873–879 (1962).PubMedGoogle Scholar
  49. 49.
    Philpot, G. W.: Tissue specific inhibition of cell proliferation in embryonic stomach epithelium in vitro. Gastroenterology 61, 25–34 (1971).Google Scholar
  50. 50.
    Portela-Gomes, G., Martins, M. M., Pinto-Correia, J. P.: Ultrastructural changes of jejunal epithelial cells in liver cirrhosis. Scand. J. Gastroenterol. 9, 657–663 (1974).PubMedGoogle Scholar
  51. 51.
    Rijke, R. P. C, Hanson, W. R., Plaisier, H. M., Osborne, J. W.: The effect of ischemic villus cell damage on crypt cell proliferation in the small intestine. Evidence for a feedback control mechanism. Gastroenterology 71, 786–792 (1976).PubMedGoogle Scholar
  52. 52.
    Rijke, R. P. C, Hanson, W. R., Plaisier, H. M.: The effect of transposition to jejunum on epithelial cell kinetics in an ileal segment. Cell Tissue Kinet. 10, 399–406 (1977).PubMedGoogle Scholar
  53. 53.
    Sandritter, W., Kiefer, G., Rick, W.: Gallocyanin chrome alum. In: Introduction to quantitative cytochemistry. Wied, G. L. (ed.), pp. 295–326. New York, London: Academic Press 1966.Google Scholar
  54. 54.
    Senior, J. R., Isselbacher, K. J.: Activation of long-chain fatty acids by rat-gut mucosa. Biochim. Biophys. Acta 44, 399–400 (1960).PubMedCrossRefGoogle Scholar
  55. 55.
    Shea, J. R., Jr.: A method for in situ cytophotometric estimation of absolute amount of ribonucleic acid using azure B. J. Histochem. Cytochem. 18, 143–152 (1970).PubMedCrossRefGoogle Scholar
  56. 56.
    Shiner, M.: Cell distribution in the jejunal mucosa in coeliac disease. In: Coeliac disease. Hekkens, W. Th. J. M., Pena, A. S. (eds.), pp. 121–135. Leiden: H. E. Steinfert Kroese B. V. 1974.Google Scholar
  57. 57.
    Shorter, R. G., Creamer, B.: Ribonucleic acid and protein metabolism in the gut. I. Observations in gastro-intestinal cells with rapid turnover. Gut 3, 118–124 (1962).PubMedCrossRefGoogle Scholar
  58. 58.
    Stere, A. J., Brister, N. W., Anthony, A.: Cytophotometric analyses of myocardial RNA in rats exposed to altitude hypoxia. J. Histochem. Cytochem. 26,459–467 (1978).PubMedCrossRefGoogle Scholar
  59. 59.
    Swift, H.: The quantitative cytochemistry of RNA. In: Introduction to quantitative cytochemistry. Wied, G. L. (ed.), pp. 355–386. New York, London: Academic Press 1966.Google Scholar
  60. 60.
    Taylor, J. H., McMaster, R. D.: Autoradiographic and microphotometric studies of desoxyribose nucleic acid during microgametogenesis in Lilium longiflorum. Chromosoma 6,489–521 (1954).PubMedCrossRefGoogle Scholar
  61. 61.
    Trier, J. S.: Morphology of the epithelium of the small intestine. In: Handbook of physiology, Section 6: Alimentary canal, Vol. III: Intestinal absorption. Code, C. F. (ed.), pp. 1125–1175. Washington: Am. Physiol. Soc. 1968.Google Scholar
  62. 62.
    Webster, H. L., Harrison, D. D.: Enzymatic activities during the transformation of crypt to columnar intestinal cells. Exp. Cell Res. 56, 245–253 (1969).PubMedCrossRefGoogle Scholar

Copyright information

© J. F. Bergmann Verlag, München 1979

Authors and Affiliations

  • S. Gutschmidt
    • 1
  • W. Kaul
    • 1
  • H. Menge
    • 1
  • E. O. Riecken
    • 1
  1. 1.Klinikum Steglitz der FU BerlinDeutschland

Personalised recommendations