Biochemische Mechanismen der Zuckerresorption in Enterozyten

  • G. Semenza
Conference paper
Part of the Verhandlungen der Deutschen Gesellschaft für innere Medizin book series (VDGINNERE, volume 85)

Zusammenfassung

Der Transport von Zucker, zuckerähnlichen Verbindungen und Zuckerderivaten durch die Bürstensaummembran der Enterozyten erfolgt durch verschiedene Transportsy steme, wovon zumindestens folgende drei, bzw. vier mit Sicherheit identifiziert worden sind: 1. ein(oder zwei) Na-abhängige Transportsysteme, die fähig sind gegen Konzentrationsgra-dienten Glukose, Galaktose, weitere Aldosen, sowie zahlreichen Glykoside zu akkumulie-ren, 2. ein Na-abhängiges Transportsystem, das das Ascorbat transportiert und sehr wahrscheinlich akkumuliert, 3. ein Transportsystem für die D-Fruktose, das weder Na-abhängig, noch fähig ist, diesen Zucker gegen Konzentrationsgradienten zu transportie-ren.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Crane, R. K.: Hypothesis for mechanism of intestinal active transport of sugars. Fed. Proc. 21, 891–895 (1962).PubMedGoogle Scholar
  2. Crane, R. K.: Na+-dependent transport in the intestine and other animal tissues. Fed. Proc. 24, 1000–1005 (1965).PubMedGoogle Scholar
  3. Crane, R. K.: 15 years struggle with the brush border. In: Intestinal absorption and malabsorption. Csaky, T. Z. (ed.), pp. 127–142. New York: Raven Press 1975.Google Scholar
  4. Crane, R. K., Malathi, P., Preiser, H.: Reconstitution of specific Na+-dependent D-glucose transport in liposomes by Triton X-100 extracted proteins from purified brush border membranes of hamster small intestine. Biochem. Biophys. Res. Commun. 71, 1010–1016 (1976).PubMedCrossRefGoogle Scholar
  5. Crane, R. K., Malathi, P., Preiser, H., Fairclough, P.: Some characteristics of kidney Na+-dependent glucose carrier reconstituted into sonicated liposomes. Am. J. Physiol. 234 E1-E5 (1978).PubMedGoogle Scholar
  6. Crane, R. K., Miller, D., Bihler, I.: The restriction on the possible mechanisms of intestinal active transport of sugars. In: Membrane transport and metabolism. Kleinzeller, A., Kotyk, A. (eds.), pp. 439–450. Prag: Czechoslovak Academy of Science Press 1961.Google Scholar
  7. Honegger, P., Gershon, E.: Further evidence for the multiplicity of carriers for free glucalogues in hamster small intestine. Biochim. Biophys. Acta 352, 127–134 (1974).PubMedCrossRefGoogle Scholar
  8. Honegger, P., Semenza, G.: Multiplicity of carriers for free glucalogues in hamster small intestine. Biochim. Biophys. Acta 318, 390–410 (1973).CrossRefGoogle Scholar
  9. Hopfer, U., Nelson, K., Perrotto, J., Isselbacher, K. J.: Glucose transport in isolated brush border membrane from rat small intestine. J. Biol. Chem. 248,25–32 (1973).PubMedGoogle Scholar
  10. Hopfer, U., Sigrist-Nelson, K., Amman, E., Murer, H.: Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells. J. Cell. Physiol. 89, 805–810 (1976).PubMedCrossRefGoogle Scholar
  11. Kessler, M., Acuto, O., Storelli, C, Murer, H., Muller, M., Semenza, G.: A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Biochim. Biophys. Acta 506, 136–154 (1978).PubMedCrossRefGoogle Scholar
  12. Kessler, M., Toggenburger, G., Semenza, G. (1979, in Vorbereitung).Google Scholar
  13. Kessler, M., Toggenburger, G., Geek, P., Semenza, G. (1980, in Vorbereitung).Google Scholar
  14. Klip, A., Grinstein, S., Semenza, G.: Transmembrane disposition of the phlorizin binding protein of intestinal brush borders. FEBS Lett. 99, 91–96 (1979a).PubMedCrossRefGoogle Scholar
  15. Klip, A., Grinstein, S., Semenza, G. (1979b, in Vorbereitung).Google Scholar
  16. Meeuwisse, G.: Glucose-galactose malabsorption. An inborn error of carrier-mediated transport. Dissertation, University of Lund, Lund, Sweden, 1979.Google Scholar
  17. Modigliani, R., Bernier, J. J.: Absorption of glucose, sodium and water by the human jejunum studied by intestinal perfusion with a proximal occluding balloon and at variable flow rates. Gut 12, 184–193 (1971).PubMedCrossRefGoogle Scholar
  18. Murer, H., Hopfer, U.: Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes. Proc. Natl. Acad. Sci. USA 71,484–488 (1974).PubMedCrossRefGoogle Scholar
  19. Rose, R. C, Schultz, S. G.: Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J. Gen. Physiol. 57, 639–663 (1971).PubMedCrossRefGoogle Scholar
  20. Sabatini, D., Kreibich, G.: Functional specialization of membrane-bound ribosomes in eucaryotic cells. In: The enzymes of biological membranes, Vol.11. Martonosi, A. (ed.), pp. 531–579. London: John Wiley & Sons 1976.CrossRefGoogle Scholar
  21. Schmitz, J., Preiser, H., Maestracci, D., Ghosh, B. K., Cerda, J. J., Crane, R. J.: Purification of the human intestinal brush border membrane. Biochim. Biophys. Acta 323, 98–112 (1973).PubMedCrossRefGoogle Scholar
  22. Schultz, S. G., Curran, P. F.: Coupled transport of sodium and organic solutes. Physiol. Rev. 50, 637–718 (1978).Google Scholar
  23. Schultz, S. G., Frizzell, R. A., Nellans, H. N.: Ion transport by mammalian small intestine. Annu. Rev. Physiol. 36, 51–91 (1974).PubMedCrossRefGoogle Scholar
  24. Semenza, G.: L’absorption des sucres dans l’intestin grele. Bull. Schweiz. Akad. Med. Wiss. 32, 209–222 (1976).PubMedGoogle Scholar
  25. Sigrist-Nelson, K., Hopfer, U.: A distinct fructose transport system in isolated brush border membrane. Biochim. Biophys. Acta 367, 247–254 (1974).PubMedCrossRefGoogle Scholar
  26. Siliprandi, L., Vanni, P., Kessler, M., Semenza, G.: Na+-dependent, electroneutral L-ascorbate transport across brush border membrane vesicles from guinea pig small intestine. Biochim. Biophys. Acta 552, 129–142 (1979).PubMedCrossRefGoogle Scholar
  27. Toggenburger, G., Kessler, M., Rothstein, A., Semenza, G., Tannenbaum, C: Similarity in effects of Na+ gradients and membrane potentials on D-glucose transport by, and phlorizin binding to, vesicles derived from brush borders of rabbit intestinal mucosal cells. J. Membr. Biol. 40, 269–290 (1978).PubMedCrossRefGoogle Scholar
  28. White, J. F., Armstrong, McD W.: Effect of transported soluted on membrane potentials in bullfrog small intestine. Amer. J. Physiol. 221, 194–201 (1971).PubMedGoogle Scholar

Copyright information

© J. F. Bergmann Verlag, München 1979

Authors and Affiliations

  • G. Semenza
    • 1
  1. 1.Laboratorium für Biochemie der ETHZürichSwitzerland

Personalised recommendations