Skip to main content

Vorbereitung und Steuerung der extrakorporalen Zirkulation aus physiologischer Sicht

  • Conference paper

Zusammenfassung

Die extrakorporale Zirkulation (EKZ) erlaubt einen zeitlich befristeten Ersatz der physiologischen Hauptfunktionen von Herz und Lunge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Albers C (1962) Die ventilatorische Kontrolle des Säure-Basen-Gleichgewichtes in Hypothermie. Anaesthesist 11: 43–51

    PubMed  CAS  Google Scholar 

  2. Albers C, Brendel W, Hardewig A, Usinger W (1958) Blutgase in Hypothermie (Ein Beitrag zur Frage der Hypoxietheorie des Kältetodes). Pflügers Arch 266: 373–393

    PubMed  CAS  Google Scholar 

  3. Althaus U, Aeberhard P, Schüpbach P, Nachbur BH, Mühlemann W (1982) Management of profound accidental hypothermia with cardiorespiratory arrest. Ann Surg 195: 492–495

    PubMed  CAS  Google Scholar 

  4. Aschoff J (1971) Temperaturregulation. In: Aschoff J, Günther B, Kramer K (Hrsg) Energiehaushalt und Temperaturregulation (Gauer/Kramer/Jung, Physiologie des Menschen, Bd 2). Urban & Schwarzenberg, München Berlin Wien, S 43–116

    Google Scholar 

  5. Aschoff J, Wever R (1958) Kern und Schale im Wärmehaushalt des Menschen. Naturwiss 45: 477–485

    Google Scholar 

  6. Badeer H (1958) Ventricular fibrillation in hypothermia. A review of factors favoring fibrillation in hypothermia with and without cardiac surgery. J thorac Surg 35: 265–273

    PubMed  CAS  Google Scholar 

  7. Baller D, Wolpers HG, Schräder R, Hoeft A, Korb H, Rösick A, Bretschneider HJ, Hellige G (1983) Paradoxical effects of catecholamines and calcium on myocardial function in moderate hypothermia. Thorac cardiovasc Surgeon 31: 131–138

    CAS  Google Scholar 

  8. Ballinger WF, Vollenweider H, Templeton JY, Pierucci L (1961) Acidosis of hypothermia. Ann Surg 154: 517–523

    PubMed  CAS  Google Scholar 

  9. Barratt-Boyes BG, Neutze JM, Seelye ER, Simpson M (1972) Complete correction of cardiovascula malformations in the first year of life. Prog cardiovasc Dis 15: 229–253

    PubMed  CAS  Google Scholar 

  10. Bazett HC, Love L, Newton M, Eisenberg L, Day R, Forster II R (1948) Temperature changes in blood flowing in arteries and veins in man. J appl Physiol 1: 3–19

    PubMed  CAS  Google Scholar 

  11. Becker H, Vinten-Johansen J, Buckberg GD, Robertson JM, Leaf JD, Lazar HL, Manganaro AJ (1981) Myocardial damage caused by keeping pH 7.40 during systemic deep hypothermia. J thorac cardiovasc Surg 82: 810–820

    PubMed  CAS  Google Scholar 

  12. Behmann FW, Bontke E (1958) Die Regelung der Wärmebildung bei künstlicher Hypothermie. I. Experimentelle Untersuchungen über den Einfluß der Narkosetiefe. Pflügers Arch 266: 408–421

    PubMed  CAS  Google Scholar 

  13. Berghold F (1982) Lawinenunfall — Richtige Erste Hilfe entscheidet über Leben und Tod. Not-fallmed 8: 1503–1519

    Google Scholar 

  14. Bigelow WG, Lindsay WK, Greenwood WF (1950) Hypothermia. Its possible role in cardiac surgery: an investigation of factors governing survival in dogs at low body temperatures. Ann Surg 132: 849–866

    PubMed  CAS  Google Scholar 

  15. Brendel W (1960) Die Bedeutung der Hirntemperatur für die Kältegegenregulation. III. Der Einfluß der Hirntemperatur auf den Kreislauf des Hundes. Pflügers Arch 270: 648–656

    CAS  Google Scholar 

  16. Brendel W (1981) Physiologie und Pathophysiologie der Unterkühlung. In: Koch P, Kohfahl M (Hrsg) Unterkühlung im Seenotfall (DGzRS-Symposium 1980). Aesopus, Basel München, S 34–43

    Google Scholar 

  17. Brendel W, Reulen J (1964) Die Kälteschwellung des Gehirns. Langenbecks Arch 308: 903–907

    CAS  Google Scholar 

  18. Brendel W, Albers C, Usinger W (1958) Die Reaktivität des Kreislaufs in Hypothermie (Ein Beitrag zur Frage des Narkoseeinflusses). Pflügers Arch 266: 357–372

    PubMed  CAS  Google Scholar 

  19. Brendel W, Reulen J, Messmer K (1965) Die Kälteschwellung des Gehirns und die Begrenzung der Überlebenszeit in Hypothermie. Klin Wochenschr 43: 515–517

    PubMed  CAS  Google Scholar 

  20. Brendel W, Müller Ch, Reulen HJ, Messmer K (1966) Elektrolytveränderungen in tiefer Hypothermie. II. Beziehungen zur klinischen und biologischen Überlebenszeit. Pflügers Arch 288: 220–239

    Google Scholar 

  21. Bretschneider HJ (1961) Sauerstoffbedarf und-versorgung des Herzmuskels. Verh Dtsch Ges Kreislaufforsch 27: 32–59

    PubMed  CAS  Google Scholar 

  22. Bretschneider HJ (1964) Überlebenszeit und Wiederbelebungszeit des Herzens bei Normo-und Hypothermie. Verh Dtsch Ges Kreislaufforsch 36: 11–34

    Google Scholar 

  23. Bretschneider HJ (1982) Stoffwechselstörungen bei Unterkühlung. In: Koch P, Kohfahl M (Hrsg) Unterkühlung im Seenotfall (2. DGzRS-Symposium 1982). Deutsche Gesellschaft zur Rettung Schiffbrüchiger, Cuxhaven, S 80–95

    Google Scholar 

  24. Bretschneider HJ, Singer D (1986) Optimierung und gegenseitige Abstimmung von extrakorporaler Zirkulation und Myokardprotektion. Thorac cardiovasc Surgeon 34Suppl I: 45–46

    Google Scholar 

  25. Bretschneider HJ, Frank A, Kanzow E, Bernard U (1957) Über den kritischen Wert und die physiologische Abhängigkeit der Sauerstoff-Sättigung des venösen Coronarblutes. Pflügers Arch 264: 399–423

    PubMed  CAS  Google Scholar 

  26. Brown Jr EB, Miller F (1952) Ventricular fibrillation following a rapid fall in alveolar carbon dioxide concentration. Am J Physiol 169: 56–60

    PubMed  CAS  Google Scholar 

  27. Brück K (1987) Wärmehaushalt und Temperaturregelung. In: Schmidt RF, Thews G (Hrsg) Physiologie des Menschen, 23. Aufl. Springer, Berlin Heidelberg New York, S 660–682

    Google Scholar 

  28. Buckberg GD, Becker H, Vinten-Johansen J, Robertson JM, Leaf J, McConnell DH (1985) Myocardial function resulting from varying acid-base management during and following deep surface and perfusion hypothermia and circulatory arrest. In: Rahn H, Prakash O (eds) Acid-base regulation and body temperature. Martinus Nijhoff, Boston Dordrecht Lancaster, pp 135–159

    Google Scholar 

  29. Calder WA (1981) Scaling of physiological processes in homeothermic animals. Annu Rev Physiol 43: 301–322

    PubMed  Google Scholar 

  30. Callaghan PB, Lister J, Paton BC, Swan H (1961) Effect of varying carbon dioxide tensions on the oxyhemoglobin dissociation curves under hypothermic conditions. Ann Surg 154: 903–910

    PubMed  CAS  Google Scholar 

  31. Crawford ES, Saleh SA (1981) Transverse aortic aneurysm. Improved results of treatment employing new modifications of aortic reconstruction and hypothermic cerebral circulatory arrest. Ann Surg 194: 180–188

    PubMed  CAS  Google Scholar 

  32. Dong E, Stinson EB, Shumway NE (1967) The ventricular fibrillation threshold in respiratory acidosis and alkalosis. Surgery 61: 602–607

    PubMed  Google Scholar 

  33. Doyle W, Fria TJ (1985) The effects of hypothermia on the latencies of the auditory brain-stem response (ABR) in the rhesus monkey. Electroencephal clin Neurophysiol 60: 258–266

    CAS  Google Scholar 

  34. Ergin MA, O’Connor J, Guinto R, Griepp RB (1982) Experience with profound hypothermia and circulatory arrest in the treatment of aneurysms of the aortic arch. J thorac cardiovasc Surg 84: 649–655

    PubMed  CAS  Google Scholar 

  35. Follette D, Fey K, Livesay J, Maloney Jr JV, Buckberg GD (1977) Studies on myocardial reperfusion injury. I. Favorable modification by adjusting reperfusate pH. Surgery 82: 149–155

    PubMed  CAS  Google Scholar 

  36. Franks F (1981) Biophysics and biochemistry of low temperatures and freezing. In: Morris GJ, Clarke A (eds) Effects of low temperatures on biological membranes. Academic Press, London New York Toronto, pp 3–19

    Google Scholar 

  37. Gattiker R (1971) Anaesthesie in der Herzchirurgie. (Aktuelle Probleme in der Chirurgie, Bd 13) Huber, Bern Stuttgart Wien

    Google Scholar 

  38. Gattiker R (1974) Anaesthesie-Hilfstechniken und Kreislauf: Kontrollierte Oberflächenhypothermie. In: Gemperle M, Hossli G, Tschirren B (Hrsg) Anaesthesie, Atmung — Kreislauf. (Anaesthesiologie und Wiederbelebung, Bd 80) Springer, Berlin Heidelberg New York, S 172–179

    Google Scholar 

  39. Gattiker R (1982) Herz-und Gefäßchirurgie. In: Benzer H, Frey R, Hügin W, Mayrhofer O (Hrsg) Anaesthesiologie, Intensivmedizin und Reanimatologie, 5. Aufl. Springer, Berlin Heidelberg New York, S 546–570

    Google Scholar 

  40. Goodrich CA (1973) Acid-base balance in euthermic and hibernating marmots. Am J Physiol 224: 1185–1189

    PubMed  CAS  Google Scholar 

  41. Grote J (1987) Gewebeatmung. In: Schmidt RF, Thews G (Hrsg) Physiologie des Menschen. Springer, Berlin Heidelberg New York, S 633–648

    Google Scholar 

  42. Hägerdal M, Harp JR, Siesjö BK (1975) Influence of changes in arterial pCO2 on cerebral blood flow and cerebral energy state during hypothermia in the rat. Acta anaesthesiol Scand Suppl 57: 25–33

    PubMed  Google Scholar 

  43. Haneda K, Thomas R, Sands MP, Breazeale DG, Dillard DH (1986) Whole body protection during three hours of total circulatory arrest: an experimental study. Cryobiology 23: 483–494

    PubMed  CAS  Google Scholar 

  44. Harris EA (1973) Metabolic aspects of profound hypothermia. In: Barratt-Boyes BG, Neutze JM, Harris EA (eds) Heart disease in infancy. Diagnosis and treatment. Churchill Livingstone, Edinburgh London, pp 65–74

    Google Scholar 

  45. Hearse DJ, Braimbridge MV, Jynge P (1981) Protection of the ischemic myocardium: Cardioplegia, Chapt 6, Hypothermia. Raven Press, New York, pp 167–208

    Google Scholar 

  46. Hegnauer AH, d’Amato HE (1954) Oxygen consumption and cardiac output in the hypothermic dog. Am J Physiol 178: 138–142

    PubMed  CAS  Google Scholar 

  47. Heidelmeyer CF, Böck JC, Pahl R, Heelige G (1989) Cardiac and peripheral haemodynamic effects of catecholamines in moderate hypothermia. Europ J Anaesthesiol 6: 65–66

    Google Scholar 

  48. Heiss WD (1989) Der ischämische Insult. Pathophysiologische Ergebnisse erweitern die Behandlungsmöglichkeiten. Dtsch Ärztebl 86: B30–B32

    Google Scholar 

  49. Hirsch W-D (1988) Diagnostik und präklinische Therapie beim Kältetrauma. Notfallmed 14: 101–108

    Google Scholar 

  50. Hirvonen J (1977) Thermal injury. In: Tedeschi CG, Eckert WG, Tedeschi LG (eds) Forensic medicine, a study in trauma and environmental hazards, vol I, Mechanical trauma. Saunders, Philadelphia London Toronto, pp 758–774

    Google Scholar 

  51. Hoffman EK (1980) Cell volume regulation in mammalian cells. In: Gilles R (ed) Animals and environmental fitness, Physiological and biochemical aspects of adaptation and ecology, vol 1. Pergamon Press, Oxford New York Toronto, pp 43–59

    Google Scholar 

  52. Hossli G (1986) Störungen im Wärmehaushalt: akzidentelle allgemeine Hypothermie. In: Ahnefeld FW, Dick W, Kilian J, Schuster H-P (Hrsg) Notfallmedizin. (Klinische Anästhesiologie und Intensivtherapie, Bd 30) Springer, Berlin Heidelberg New York, S 172–179

    Google Scholar 

  53. Hossli G, Frey P (1983) Hypothermie. In: Hossli G, Jenny R (Hrsg) Grundlagen 1 der Anästhesiologie und Intensivbehandlung, 2. Aufl. Huber, Bern Stuttgart Wien, S 355–371

    Google Scholar 

  54. Hossmann KA (1987) Experimentelle Grundlagen der Ischämietoleranz des Gehirns. Z Kardiol 76Suppl 4:47–66

    PubMed  Google Scholar 

  55. Howell BJ, Baumgardner FW, Bondi K, Rahn H (1970) Acid-base balance in cold-blooded vertebrates as a function of body temperature. Am J Physiol 218: 600–606

    PubMed  CAS  Google Scholar 

  56. Jackson DC (1979) Respiration. In: Harless M, Morlock H (eds) Turtles, perspectives and research. Wiley, New York Chichester Brisbane Toronto, pp 165–191

    Google Scholar 

  57. Jackson DC, Heisler N (1983) Intracellular and extracellular acid-base and electrolyte status of submerged anoxic turtles at 3°C. Respir Physiol 53: 187–201

    PubMed  CAS  Google Scholar 

  58. Kangir CB, Madsen T, Petersen PH, Stokke D (1988) Calcium, magnesium and phosphate during and after hypothermic cardiopulmonary bypass without temperature correction of acid base status. Acta anaesthesiol Scand 32: 676–680

    Google Scholar 

  59. Kayser Ch (1961) The physiology of natural hibernation. Pergamon Press, New York Oxford London Paris

    Google Scholar 

  60. Kayser CH (1964) Stoffwechsel und Winterschlaf. Helgoländer wiss Meeresunters 9: 158–186

    CAS  Google Scholar 

  61. Kirklin JW, Barratt-Boyes BG (1986) Cardiac surgery. Wiley, New York

    Google Scholar 

  62. Kleiber M (1961) The fire of life. An introduction to animal energetics. Wiley, New York

    Google Scholar 

  63. Kramer K, Reichel H (1944) Die Grenzen der chemischen Wärmeregulation. Klin Wochenschr 23: 192–198

    Google Scholar 

  64. Kreider MB, Buskirk ER, Bass DE (1958) Oxygen consumption and body temperatures during the night. J appl Physiol 12: 361–366

    PubMed  CAS  Google Scholar 

  65. Kreienbühl G, Gattiker R (1976) Der Einfluß der arteriellen Kohlensäurespannung auf den Sauerstoffverbrauch während extrakorporalem Kreislauf in Hypothermie. Anaesthesist 25: 47–50

    PubMed  Google Scholar 

  66. Kreienbühl G, Strittmatter J, Ayim E (1976) Blood gas analyses of hibernating hamsters and dormice. Pflügers Arch 366: 167–172

    PubMed  Google Scholar 

  67. Kroncke GM, Nichols RD, Mendenhall JT, Myerowitz PD, Starling JR (1986) Ectothermic philosophy of acid-base balance to prevent fibrillation during hypothermia. Arch Surg 121: 303–304

    PubMed  CAS  Google Scholar 

  68. Leitz KH, Tsilimingas N, Güse HG, Meier P, Bachmann HJ (1989) Unfall durch Ertrinken mit extremer Unterkühlung — Wiedererwärmung mittels extrakorporaler Zirkulation. Chirurg 60: 352–355

    PubMed  CAS  Google Scholar 

  69. Lewis FJ, Taufic M (1953) Closure of atrial septal defects with the aid of hypothermia; experimental accomplishments and the report of one successful case. Surgery 33: 52–59

    PubMed  CAS  Google Scholar 

  70. Livesay JJ, Cooley DA, Reul G J et al. (1983) Resection of aortic arch aneurysms: A comparison of hypothermic techniques in 60 patients. Ann thorac Surg 36: 19–28

    PubMed  CAS  Google Scholar 

  71. Lundsgaard-Hansen P (1966) Sauerstoffversorgung und Säure-Basenhaushalt in tiefer Hypothermic (Anaesthesiologie und Wiederbelebung, Bd 12) Springer, Berlin Heidelberg New York

    Google Scholar 

  72. Lutz W (1953) Die experimentellen Grundlagen der Kältenarkose. Anaesthesist 2: 161–167

    PubMed  CAS  Google Scholar 

  73. Lyman ChP, Willis JS, Malan A, Wang LCH (eds) (1982) Hibernation and torpor in mammals and birds. Academic Press, New York London

    Google Scholar 

  74. Macknight ADC, Leaf A (1977) Regulation of cellular volume. Physiol Rev 57: 510–573

    PubMed  CAS  Google Scholar 

  75. Majewska AA, Morris LE, Lee DCh, Ensign LH, Enloe GC, Schlobohm RM (1966) Blood gas determinations in hypothermic mammals. Acta anaesthesiol Scand Suppl 23: 688–695

    PubMed  CAS  Google Scholar 

  76. Malan A (1980) Enzyme regulation, metabolic rate and acid-base state in hibernation. In: Gilles R (ed) Animals and environmental fitness, Physiological and biochemical aspects of adaptation and ecology, vol 1. Pergamon Press, Oxford New York Toronto, pp 487–501

    Google Scholar 

  77. Malan A (1982) Respiration and acid-base state in hibernation. In: Lyman ChP, Willis JS, Malan A, Wang LCH (eds) Hibernation and torpor in mammals and birds. Academic Press, New York London, pp 237–282

    Google Scholar 

  78. Malan A (1985) Acid-base regulation during hibernation. In: Rahn H, Prakash O (eds) Acid-base regulation and body temperature. Martinus Nijhoff, Boston Dordrecht Lancaster, pp 33–53

    Google Scholar 

  79. Malan A, Arens H, Waechter A (1973) Pulmonary respiration and acid-base state in hibernating marmots and hamsters. Respir Physiol 17: 45–61

    PubMed  CAS  Google Scholar 

  80. McConnell DH, White F, Nelson RL, Goldstein SM, Maloney JV, DeLand EC, Buckberg GD (1975) Importance of alkalosis in maintenance of „ideal“ blood pH during hypothermia. Surg Forum 26: 263–265

    PubMed  CAS  Google Scholar 

  81. Messmer K, Sunder-Plassmann L (1974) Hemodilution. Prog Surg 13: 208–245

    PubMed  CAS  Google Scholar 

  82. Messmer K, Brendel W, Reulen HJ, Nordmann KJ (1966) Elektrolytveränderungen in tiefer Hypothermie III. Beziehungen zur biologischen Überlebenszeit bei künstlichem Kreislauf. Pflügers Arch 288: 240–261

    Google Scholar 

  83. Mikat M, Peters J, Zindler M, Arndt JO (1984) Whole body oxygen consumption in awake, sleeping, and anesthetized dogs. Anesthesiology 60: 220–227

    PubMed  CAS  Google Scholar 

  84. Mohri A, Muraoka R, Yokota Y et al. (1972) Deep hypothermia combined with cardiopulmonary bypass for cardiac surgery in neonates and infants. J thorac cardiovasc Surg 64: 422–429

    Google Scholar 

  85. Mohri H, Merendino KA (1969) Hypothermia with or without a pump oxygenator. In: Gibbon JH, Sabiston DC, Spencer FC (eds) Surgery of the chest. Saunders, Philadelphia London Toronto, pp 643–673

    Google Scholar 

  86. Musacchia XJ, Volkert WA (1971) Blood gases in hibernating and active ground squirrels: HbO2 affinity at 6 and 38°C. Am J Physiol 221: 128–130

    PubMed  CAS  Google Scholar 

  87. Norwood WI, Norwood CR, Castaneda AR (1979) Cerebral anoxia: Effect of deep hypothermia and pH. Surgery 86: 203–209

    PubMed  CAS  Google Scholar 

  88. Ohmi M, Sato S, Ito T, Haneda K, Mohri H (1990) The effects of 5% carbon dioxide on the quantitative analysis of long-term pathology of the brain after surface hypothermia. Cryobiology 27: 31–41

    PubMed  CAS  Google Scholar 

  89. Osborn JJ (1953) Experimental hypothermia: Respiratory and blood pH changes in relation to cardiac function. Am J Physiol 175: 389–398

    PubMed  CAS  Google Scholar 

  90. Park YS, Hong SK (1976) Properties of toad skin Na-K-ATPase with special reference to effect of temperature. Am J Physiol 231: 1356–1363

    PubMed  CAS  Google Scholar 

  91. Paton BC (1983) Accidental hypothermia. Pharmac Ther 22: 331–377

    CAS  Google Scholar 

  92. Penrod KE (1951) Cardiac oxygenation during severe hypothermia in dog. Am J Physiol 164: 79–85

    PubMed  CAS  Google Scholar 

  93. Platner WS, Hosko Jr MJ (1953) Mobility of serum magnesium in hypothermia. Am J Physiol 174: 273–276

    PubMed  CAS  Google Scholar 

  94. Popovic V (1964) Cardiac output in hibernating ground squirrels. Am J Physiol 207: 1345–1348

    PubMed  CAS  Google Scholar 

  95. Popovic V, Popovic P (1974) Hypothermia in biology and in medicine. Grune & Stratton, New York San Francisco London

    Google Scholar 

  96. Popovic V, Popovic P (1985) Survival of hypothermic dogs after 2-h circulatory arrest. Am J Physiol 248: R 308–R 311

    CAS  Google Scholar 

  97. Radke J (1988) Das ionisierte Calcium im Extrazellularraum bei Hypothermie und Azidose. (Anaesthesiologie und Intensivmedizin, Bd 207) Springer, Berlin Heidelberg New York

    Google Scholar 

  98. Rahn H (1967) Gas transport from the external environment to the cell. In: de Reuck AVS, Porter R (eds) Development of the lung (Ciba Foundation Symposium) Churchill, London, pp 3–23.

    Google Scholar 

  99. Rahn H (1985) Introduction. In: Rahn H, Prakash O (eds) Acid-base regulation and body temperature. Martinus Nijhoff, Boston Dordrecht Lancaster, pp 1–11

    Google Scholar 

  100. Rand PW, Lacombe E, Hunt HE, Austin WH (1964) Viscosity of normal human blood under normothermic and hypothermic conditions. J appl Physiol 19: 117–122

    PubMed  CAS  Google Scholar 

  101. Reeves RB (1969) Role of body temperature in determining the acid-base state in vertebrates. Fed Proc 28: 1204–1208

    PubMed  CAS  Google Scholar 

  102. Reeves RB (1972) An imidazole alphastat hypothesis for vertebrate acid-base regulation: tissue carbon dioxide content and body temperature in bullfrogs. Respir Physiol 14: 219–236

    PubMed  CAS  Google Scholar 

  103. Reeves RB (1976) Temperature-induced changes in blood acid-base status: pH and pCO2 in a binary buffer. J appl Physiol 40: 752–761

    PubMed  CAS  Google Scholar 

  104. Reeves RB (1976) Temperature-induced changes in blood acid-base status: Donnan rCl and red cell volume. J appl Physiol 40: 762–767

    PubMed  CAS  Google Scholar 

  105. Reeves RB (1978) Temperature and acid-base balance effects on oxygen transport by human blood. Respir Physiol 33: 99–102

    PubMed  CAS  Google Scholar 

  106. Reeves RB (1985) What are normal acid-base conditions in man when body temperature changes? In: Rahn H, Prakash O (eds) Acid-base regulation and body temperature. Martinus Nijhoff, Boston Dordrecht Lancaster, pp 13–32

    Google Scholar 

  107. Rehder K (1972) Der Säure-Basen-Haushalt. In: Frey R, Hügin W, Mayrhofer O, Benzer H (Hrsg) Lehrbuch der Anaesthesiologie, Reanimation und Intensivtherapie, 3. Aufl. Springer, Berlin Heidelberg New York, S 83–103

    Google Scholar 

  108. Reulen HJ, Aigner P, Brendel W, Messmer K (1966) Elektrolytveränderungen in tiefer Hypothermie. I. Die Wirkung akuter Auskühlung bis 0°C und Wiedererwärmung. Pflügers Arch 288: 197–219

    Google Scholar 

  109. Riedesel ML (1957) Serum magnesium levels in mammalian hibernation. Trans Kans Acad Sci 60: 99–141

    CAS  Google Scholar 

  110. Robin ED (1962) Relationship between temperature and plasma pH and carbon dioxide tension in the turtle. Nature 195: 249–251

    PubMed  CAS  Google Scholar 

  111. Rosenblum SM, Ruth RA, Gal TJ (1985) Brain stem auditory evoked potential monitoring during profound hypothermia and circulatory arrest. Ann Otol Rhinol Laryngol 94: 281–283

    PubMed  CAS  Google Scholar 

  112. Rosenhain FR, Penrod KE (1951) Blood gas studies in the hypothermic dog. Am J Physiol 166: 55–61

    PubMed  CAS  Google Scholar 

  113. Rosenthal TB (1948) The effect of temperature on the pH of blood and plasma in vitro. J biol Chem 173: 25–30

    PubMed  CAS  Google Scholar 

  114. Schmid E, Gattiker R (1977) Totalkorrektur angeborener Herzfehler bei Kindern unter 2 Jahren. Herz 2: 411–419

    Google Scholar 

  115. Schmidt-Nielsen K (1984) Scaling: Why is animal size so important? Cambridge University Press, Cambridge New York Melbourne

    Google Scholar 

  116. Seelye ER, Harris EA, Squire AW, Barratt-Boyes BG (1971) Metabolic effects of deep hypothermia and circulatory arrest in infants during cardiac surgery. Brit J Anaesth 43: 449–459

    PubMed  CAS  Google Scholar 

  117. Severinghaus JS (1965) Blood gas concentrations. In: Fenn WO, Rahn H (eds) Respiration (Handbook of physiology, section 3), vol II. American Physiological Society, Washington, D.C., pp 1475–1487

    Google Scholar 

  118. Severinghaus JW (1966) Blood gas calculator. J appl Physiol 21: 1108–1116

    PubMed  CAS  Google Scholar 

  119. Sinet M, Muffat-Joly M, Henzel D, Renault G, Pocidalo JJ (1984) Performance of hypothermic isolated rat heart at various levels of blood acid-base status. J appl Physiol 56: 1526–1532

    PubMed  CAS  Google Scholar 

  120. Sinet M, Muffat-Joly M, Bendaace T, Pocidalo J-J (1985) Maintaining blood pH at 7.4 during hypothermia has no significant effect on work of the isolated rat heart. Anesthesiology 62: 582–587

    PubMed  CAS  Google Scholar 

  121. Singer D (1989) Der Winterschlaf als „Naturexperiment“ zur Temperatursenkung und Umsatzreduktion bei homöothermen Organismen. Med Diss, Göttingen

    Google Scholar 

  122. Singer D (1989) Wärmehaushalt, Pathophysiologie der akzidentellen Hypothermie. Anaesthesist 38Suppl 1: 117

    Google Scholar 

  123. Singer D, Bretschneider HJ (1990) Metabolic reduction in hypothermia: pathophysiological problems and natural examples. Thorac cardiovasc Surgeon 38 (im Druck)

    Google Scholar 

  124. Smith DS (1987) Accidental hypothermia. Giving „dead“ victims the benefit of the doubt. Postgrad Med 81: 38–47

    PubMed  CAS  Google Scholar 

  125. Somero GN, White FN (1985) Enzymatic consequences under alphastat regulation. In: Rahn H, Prakash O (eds) Acid-base regulation and body temperature. Martinus Nijhoff, Boston Dordrecht Lancaster, pp 55–80

    Google Scholar 

  126. Sunder-Plassmann L, Kloevekorn WP, Messmer K (1971) Blutviscosität und Hämodynamik bei Anwendung kolloidaler Volumenersatzmittel. Anaesthesist 20: 172–180

    PubMed  CAS  Google Scholar 

  127. Suomalainen P (1939) Hibernation of the hedgehog. VI. Serum magnesium and calcium. Artificial hibernation. Also a contribution to chemical physiology of diurnal sleep. Ann Acad Sci Fenn A 53(7): 1–68

    Google Scholar 

  128. Swain JA (1988) Hypothermia and blood pH. A review. Arch intern Med 148: 1643–1646

    CAS  Google Scholar 

  129. Swain JA, White FN, Peters RM (1984) The effect of pH on the hypothermic ventricular fibrillation threshold. J thorac cardiovasc Surg 87: 445–451

    PubMed  CAS  Google Scholar 

  130. Swan H (1982) The hydroxyl-hydrogen ion concentration ratio during hypothermia. Surg Gynecol Obstet 155: 897–912

    PubMed  CAS  Google Scholar 

  131. Swan H (1985) Acid-base management during hypothermic circulatory arrest for cardiac surgery. In: Rahn H, Prakash O (eds) Acid-base regulation and body temperature. Martinus Nijhoff, Boston Dordrecht Lancaster, pp 81–106

    Google Scholar 

  132. Tarnow J (1983) Anaesthesie und Kardiologie in der Herzchirurgie. Grundlagen und Praxis. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  133. Taylor CA (1988) Surgical hypothermia. Pharmac Ther 38: 169–200

    CAS  Google Scholar 

  134. Thauer R (1956) Ergebnisse experimenteller Kreislaufuntersuchungen bei Hypothermie. Thoraxchir 3: 522–538

    Google Scholar 

  135. Thauer R (1958) Pathophysiologie der Hypothermie. Thoraxchir 6: 128–140

    CAS  Google Scholar 

  136. Thauer R, Brendel W (1962) Hypothermie. Prog Surg 2: 73–271

    Google Scholar 

  137. Thews G (1972) Nomogramme zur Berücksichtigung der Körpertemperatur bei Blutgas-und pH-Messungen. Anaesthesist 21: 466–472

    PubMed  CAS  Google Scholar 

  138. Truchot J-P (1987) Comparative aspects of extracellular acid-base balance. (Zoophysiology, vol 20) Springer, Berlin Heidelberg New York

    Google Scholar 

  139. Usinger W (1962) Überlebenszeit und maximale Lebensdauer in tiefer Hypothermie. Pflügers Arch 275: 646–657

    CAS  Google Scholar 

  140. von Werz R (1943) Sauerstoffmangel als Ursache des Kältetodes. Arch exp Pathol Pharmakol 202: 561–593

    Google Scholar 

  141. Weast RC, Astle MJ (eds) (1980) CRC Handbook of chemistry and physics, 60th ed. CRC Press, Boca Raton, p D-168

    Google Scholar 

  142. White FN (1981) A comparative physiological approach to hypothermia. J thorac cardiovasc Surg 82: 821–831

    PubMed  CAS  Google Scholar 

  143. White FN, Somero G (1982) Acid-base regulation and phospholipid adaptations to temperature: time courses and physiological significance of modifying the milieu for protein function. Physiol Rev 62: 40–90

    PubMed  CAS  Google Scholar 

  144. Wolfson SK, Yalav E, Eisenstat S (1963) An isothermic technique for profound hypothermia and its effect on metabolic acidosis. J thorac cardiovasc Surg 45: 466–475

    PubMed  Google Scholar 

  145. Zindler M, Dudziak R, Pulver KG (1977) Die künstliche Hypothermic. In: Benzer H, Frey R, Hügin W, Mayrhofer O (Hrsg) Lehrbuch der Anaesthesiologie, Reanimation und Intensivtherapie, 4. Aufl. Springer, Berlin Heidelberg New York, S 282–291

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Singer, D., Hellige, G. (1991). Vorbereitung und Steuerung der extrakorporalen Zirkulation aus physiologischer Sicht. In: Preuße, C.J., Schulte, H.D. (eds) Extrakorporale Zirkulation Heute. Steinkopff. https://doi.org/10.1007/978-3-642-85401-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85401-9_1

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-85402-6

  • Online ISBN: 978-3-642-85401-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics