Schlagvolumen

  • Karl Stangl
  • Alexander Wirtzfeld
Conference paper

Zusammenfassung

Das ventrikuläre Schlagvolumen bezeichnet als Differenz zwischen dem enddiastolischen (EDV) und endsystolischen Volumen (ESV) die in der Systole ausgeworfene Blutmenge des entsprechenden Ventrikels. Schlagvolumen und Herzfrequenz sind die Teilgrößen des Herzzeitvolumens, das im Regelmodell des Blutkreislaufs (Kapitel 2) das Stellglied repräsentiert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Antoni H (1977). Auslösung, Mechanismus und Steuerung der Kontraktion. In: Reindell H, Roskamm H (Hrsg). Herzkrankheiten. Pathophysiologie, Diagnostik,Therapie. Springer, Berlin, Heidelberg, New York, S54Google Scholar
  2. Antoni H (1980). Funktion des Herzens. In: Schmidt RF, Thews G. Physiologie des Menschen. Springer, Berlin, Heidelberg, New York, S391Google Scholar
  3. Astrand PO, Cuddy TE, Saltin B, Stenberg J (1977). Cardiac output during submaximal and maximal work. J Appl Physiol 19:268Google Scholar
  4. Baan J, Aouw Jong TT, Kerkhof PLM, Moene RJ, van Dijk AD, van der Velde Etkoops J (1981). Continuous stroke volume and cardiac output from intraventricular dimensions obtained with impedance catheter. Cardiovasc Research 15: 328CrossRefGoogle Scholar
  5. Baan J, van der Velde ET, de Bruin HG, Smeenk GJ, Koops J, van Dijk AD, Temmerman D, Senden J, Buis B (1984). Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 70:5, 812PubMedCrossRefGoogle Scholar
  6. Bennett TD, Olson WH, Bornzin GA, Baudino MD (1985). Alternatives modes of pacing. In: Gomez FP (ed) Cardiac Pacing. Electrophysiology. Tachyarrhythmias. Editorial Grouz, Madrid, p577Google Scholar
  7. Boheim G, Schaldach M (1985). Physiologische Herzschrittmachersteuerung mit Frequenzadaptation. Biomed Technik 30 (Ergbd):64CrossRefGoogle Scholar
  8. Boheim G, Schaldach M (1987). A pacemaker that measures the heart volume to realize closed loop rate adaptation. PACE 10:1209Google Scholar
  9. Borer JS, Bacharach SL, Green MV, Kent KM, Epstein SE, Johnson GS (1977). Real-time radionuclide cineangiography in the noninvasive evaluation of global and regional left ventricular function at rest and during exercise in patients with coronary artery disease. N Engl J Med 296:839PubMedCrossRefGoogle Scholar
  10. Borer JS, Kent KM, Bacharach SL, Green MV, Rosing DR, Seides GF, Epstein SE, Johnston GS (1979). Sensitivity, specificity and predictive accuracy of radionuclide cineangiography during exercise in patients with coronary artery disease: comparison with exercise electrocardiography. Circulation 60:572PubMedGoogle Scholar
  11. Braunwald E, Sonnenblick EH, Ross J, Glick G, Epstein E (1967). An analysis of the cardiac response to exercise. Circ Res XX (Suppl I): 1–44Google Scholar
  12. Chapman CB, Fisher JN, Sproule BJ (1960). Behavior of stroke volume at rest and during exercise in human beings. J Clin Invest 30:1208CrossRefGoogle Scholar
  13. Clausen JP (1976). Circulatory adjustments to dynamic exercise and effects of physical training in normal subjects and patients with coronary artery disease. Prog Cardiovasc Dis XVIII:459CrossRefGoogle Scholar
  14. Frank O (1895). Zur Dynamik des Herzmuskels. Z Biol 32:370Google Scholar
  15. Frewer RA (1972). The effect of frequency changes on the electrical conductance of moving and stationary blood. Med Biol Eng 10:734PubMedCrossRefGoogle Scholar
  16. Geddes LA, Sadler C (1973). The specific resistance of blood at body temperature. Med Biol Eng 11:336PubMedCrossRefGoogle Scholar
  17. Higginbotham MB, Morris KG, Williams RS, McHale PA, Coleman RE, Cobb FR (1986). Regulation of stroke volume during submaximal and maximal upright exercise in normal man. Circ Res 58:281PubMedGoogle Scholar
  18. Hill DW, Thompson FD (1975). The effect of haematocrit on the resistivity of human blood at 37 °C and 100 kHz. Med Biol Eng 13:182PubMedCrossRefGoogle Scholar
  19. Horwitz LD, Atkins JM, Leshin SJ (1972). Role of Frank-Starling mechanism in exercise. Circ Res 31:868PubMedGoogle Scholar
  20. Jacob R, Gülch R, Kissling R, Sick W (1971). Autoregulative Mechanismen des Herzens bei akuter Druck-und Volumenbelastung. Ärtzl Forsch 25:85Google Scholar
  21. Kass DA, Yamazaki T, Burkhoff D, Maughan WL, Sagawa K (1986). Determination of left ventricular end-systolic pressure-volume relationships by the conductance (volume) catheter technique. Circulation 73:586PubMedCrossRefGoogle Scholar
  22. Kindler M, Thormann J, Kramer W (1986). Klinischer Einsatz eines neuartigen Herzkatheters zur simultanen Erfassung von Druck-und Volumensignalen. Biomed Technik 31(Ergbd):74CrossRefGoogle Scholar
  23. McKay RG, Spears JR, Aroesty JM, Baim DS, Royal HD, Heller GV, Lincoln W, Salo RW, Braunwald E, Grossman W (1984). Instantaneous measurement of left and right ventricular stroke volume and pressure-volume relationships with an impedance catheter. Circulation 69:703PubMedCrossRefGoogle Scholar
  24. Mohapatra SN, Hill DW (1975). The changes in blood resistivity with haematocrit and temperature. Europ J Intens Care Med 1:153CrossRefGoogle Scholar
  25. Mungall AG, Morris D, Martin WS (1961). Measurement of the dielectric properties of blood. IRE Trans Biomedical Electronics 8:109CrossRefGoogle Scholar
  26. Neumann G, Bakels N, Niederau C (1985). Intracardiac impedance as a stroke volume sensor. In: Gomez FP (ed) Cardiac Pacing. Electrophysiology. Tachyarrhythmias. Editorial Grouz, Madrid, p803Google Scholar
  27. Olsen CO, Tyson GS, MAier GW, Davis JW, Rankin JS (1985). Diminished stroke volume during inspiration: a reverse thoracic pump. Circulation 72:668PubMedCrossRefGoogle Scholar
  28. Rush S, Abildskov JA, McFee R (1963). Resistivity of body tissues at low frequencies. Circ Res XII:40Google Scholar
  29. Rushmer RF (1959). Constancy of stroke volume in ventricular response to exertion. Am J Physiol 196:745PubMedGoogle Scholar
  30. Schön HR, Ried CR, Arnold-Schneider M, Sebening H, Sauer E, Bauer R, Papst HW, Blömer H (1986). Radionuclide assessment of normal left ventricular response to exercise in patients without evidence of heart disease. Europ Heart J 7:118Google Scholar
  31. Salo RW, Pederson BD, Pederson BD, Olive AL, Lincoln WC, Wallner TG (1984). Continuous ventricular volume assessment for diagnosis and pacemaker control. PACE 7:1267PubMedCrossRefGoogle Scholar
  32. Salo RW, Wallner TG, Pederson BD (1986). Measurement of ventricular volume by intracardiac impedance: theoretical and empirical approaches. IEEE Trans on Biom Eng BME. 33:189CrossRefGoogle Scholar
  33. Santamore WP, Heckman JL, Bove AA (1984). Right and left ventricular pressure-volume response to respiratory maneuvers. J Appl Physiol: Respirat Environ Exercise Physiol 57(5): 1920Google Scholar
  34. Snoek J, Berkhof M, Vrinis C (1988). Bipolar impedance measurement as sensor for rate responsive pacing. PACE 11 (Suppl):813Google Scholar
  35. Schwan HP, Kay CF (1956). Specific resistance of body tissues. Circ Res IV:664Google Scholar
  36. Schwan HP, Kay CF (1957). Capacitive properties of body tissues. Circ Res V:439Google Scholar
  37. Sonnenblick EH, Braunwald E, Williams JF, Glick G (1965). Effects of exercise on myocardial force-velocity relations in intact unanaestetized man: relative roles of changes in heart rate, sympathetic activity, and ventricular dimensions. J Clin Invest 44:2051PubMedCrossRefGoogle Scholar
  38. Stangl K, Wirtzfeld A, Göbl G, Heinze R, Laule M, Hoekstein K (1987). Schlagvolumen, zentralvenöse Sauerstoffsättigung und Bluttemperatur als Steuergrößen einer frequenzadaptierten Schrittmacherstimulation. Z Kardiol 76:110PubMedGoogle Scholar
  39. Starling EH (1915). The lineacre lecture on the law of the heart. Longmans, CambridgeGoogle Scholar
  40. Strauss HW, Zaret BL, Hurley PJ, Natarajan TK, Pitt B (1971). A scintiphotographic method for measuring left ventricular ejection fraction in man without cardiac catheterisation. Am J Cardiol 28:575PubMedCrossRefGoogle Scholar
  41. Thadani U, Parker JO (1978). Hemodynamics at rest and during supine and sitting bicycle exercise in normal subjects. Am J Cardiol 41:52PubMedCrossRefGoogle Scholar
  42. Trautmann ED, Newbower RS (1983). A practical analysis of the electrical conductivity of blood. IEEE Trans Biom Eng BME 30:141CrossRefGoogle Scholar
  43. Vatner SF, Pagani M (1976). Cardiovascular adjustments to exercise: hemodynamics and mechanisms. Prog Cardiovasc Dis XIX:91CrossRefGoogle Scholar
  44. Voelz MB, Wessale JL, Geddes LA, Voorhees, H Patel UH (1988). Analysis of right-ventricular impedance waveform and its correlation to stroke volume. PACE 11 (Suppl):813Google Scholar
  45. Warner HR, Toronto AF (1960). Regulation of cardiac output through stroke volume. Circ Res 8:549PubMedGoogle Scholar
  46. Zaret BJ, Strauss HW, Hurley PJ, Natarajan TK, Pitt B (1971). A noninvasive scintigraphic method for detecting regional ventricular dysfunction in man. New Engl J Med 284:1165PubMedCrossRefGoogle Scholar
  47. Zimmermann G, Pfeiffer U (1984). Transthorakale elektrische Impedanzmessung zur Lungenwassererfassung: Gegenwärtiger Stand und Zukunftsaspekte. In: Bergmann H, Gilly H, Steinbereithner K, Sturm J (Hrsg) Lungenwasserbestimmung, Teil II. Klinische Bedeutung. Beiträge zur Anaesthesiologie und Intensivmedizin 6. Maudrich, Wien, München, Bern, S180Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG, Darmstadt 1990

Authors and Affiliations

  • Karl Stangl
  • Alexander Wirtzfeld

There are no affiliations available

Personalised recommendations