Advertisement

Die Rolle von mononukleären Zellen und deren Zytokinen in der Pathophysiologie vaskulärer Erkrankungen

  • M. M. Schönharting
Conference paper

Zusammenfassung

Vaskuläre Erkrankungen spielen bei der heute vorherrschenden Altersstruktur der Bevölkerung in der westlichen Welt eine dominierende Rolle, sowohl was die Morbidität als auch die Mortalität anbelangt. Dabei sind es — vielleicht mit Ausnahme von traumatischen Ereignissen mit akutem Blutverlust — nicht die Gefäßläsionen per se, die das klinische Bild bei manifesten vaskulären Erkrankungen beherrschen, vielmehr dominieren die daraus resultierenden Organbeeinträchtigungen mit allen ihren Folgeerscheinungen. Es sind also in erster Linie Störungen in der nutritiven Mikrozirkulation, die die klinische Symptomatik bedingen. Die therapeutischen Interventionsversuche der jüngeren Zeit zielen folgerichtig darauf ab, das Fließ verhalten des Blutes im Mikrozirkulationsbereich positiv zu beeinflussen, wobei den intrinsischen Fließeigenschaften ein besonderer Stellenwert beigemessen wird (1, 2). So hat es nicht an Ansätzen gefehlt, sowohl durch gezielte Verbesserung der Theologischen Eigenschaften von Erythrozyten (3), Thrombozyten (4) oder Plasmaproteinen (5) als auch unspezifisch durch unterschiedliche Hämodilutionsverfahren (6,7) die Fließeigenschaften des Blutes speziell im Bereich der nutritiven Mikrozirkulation zu verbessern.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Stuart J, Kenny MW (1980) Blood rheology. J Clin Pathol 33: 417–429PubMedCrossRefGoogle Scholar
  2. 2.
    Chien S (1983) Hemorheology — normal physiology and pathological changes in blood viscosity and blood flow. In: Spittell JA (ed) Pharmacological Approach to the Treatment of Limb Ischemia. College of Physicians, PhiladelphiaGoogle Scholar
  3. 3.
    Schmid-Schönbein H (1981) Blood rheology and physiology of microcirculation. In: Manrique RV, Müller R (eds) Disorders of Blood Flow — New Therapeutic Aspects. Excerpta Medica, AmsterdamGoogle Scholar
  4. 4.
    Born GVR (1983) Hemorheological influences on platelet thrombogenesis. Eur Neurol 22 (Suppl I): 30–34PubMedCrossRefGoogle Scholar
  5. 5.
    Ehrly AM (1976) Therapy of occlusive arterial diseases with ancrod. Artery 2: 98–108Google Scholar
  6. 6.
    Rieger H, Köhler M, Schoop W (1979) Hemodilution (HD) in patients with ischemic skin ulcers. Klin Wochenschr 57:1153–1161PubMedCrossRefGoogle Scholar
  7. 7.
    Gottstein U (1981) Einfluß der Hämodilution sowie der Blutviskosität auf die zerebrale Zirkulation mit Konsequenzen für die Therapie. Arzn-Forsch/Drug Res 31: 2028–2032Google Scholar
  8. 8.
    Ames A, Wright RL, Kowada M, Thurston JM, Majno G (1968) Cerebral ischemia II — the no reflow phenomenon. Am J Pathol 52: 437–453PubMedGoogle Scholar
  9. 9.
    Schmid-Schönbein GW, Skalak R (1986) Leukocyte rheology. In: Skalak R, Chien S (eds) Handbook of Bioengineering. McGraw-Hill Publishers, New YorkGoogle Scholar
  10. 10.
    Lucchesi BR (1986) Leukocytes and ischemia-induced myocardial injury. Ann Rev Pharmacol Toxicol 26: 201–224CrossRefGoogle Scholar
  11. 11.
    Engler RL, Schmid-Schönbein GW, Pavelec RS (1983) Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol 111: 98–111PubMedGoogle Scholar
  12. 12.
    Ernst E, Hammerschmidt DE, Bagge U, Matrai A, Dormandy JA (1987) Leukocytes and the risk of ischemic diseases. JAMA 257: 2318–2324PubMedCrossRefGoogle Scholar
  13. 13.
    Schönharting MM, Labs KH (1988) Pathophysiologische Auswirkungen von Leukozyten-Endothel-Interaktionen auf die Mikrozirkulation. CorVas 2: 211–220Google Scholar
  14. 14.
    Harlan JM (1985) Leukocyte-endothelial interactions. Blood 65: 513–525PubMedGoogle Scholar
  15. 15.
    Vedder NB, Winn RK, Rice CL, Chi EY, Arfors K-E, Harlan JM (1988) Amonoclonal antibody to the adherence-promoting leukocyte glycoprotein, CD 18, reduces organ injury and improves survival from hemorrhagic shock and resuscitation in rabbits. J Clin Invest 81: 939–944PubMedCrossRefGoogle Scholar
  16. 16.
    Williams TJ, Rampart M, Nourshargh S, Hellewell PG, Brain SD, Jose PJ (1987) Interaction of poly-morphonuclear leukocytes and endothelial cells — functional consequences.Thromb Haemostas 58: 326/A 1186Google Scholar
  17. 17.
    Nees S (1987) Neuere Erkenntnisse zur Physiologie und Pathophysiologie des Gefäßendothels, vor allem im Rahmen der Atherogenese. Internist 28: 699–710PubMedGoogle Scholar
  18. 18.
    Thilo-Körner DGS, Heinrich D, Lasch HG (1983) Endothelial cell control functions in blood coagulation. In: Thilo-Körner DGS, Freshney RI (eds) The Endothelial Cell — a Pluripotent Control Cell of the Vessel Wall. Karger, BaselGoogle Scholar
  19. 19.
    Nawroth PP, Steimu DM (1986) Endothelial cells as active participants in procoagulant reactions. In: Gimbrone MA jr (ed) Vascular Endothelium in Hemostasis and Thrombosis. Churchill Livingstone, Edinburgh London New YorkGoogle Scholar
  20. 20.
    Loskutoff DJ (1986) The fibrinolytic system of cultured endothelial cells — insights into the role of endothelium in thrombolysis. In: Gimbrone MA jr (ed) Vascular Endothelium in Hemostasis and Thrombosis. Churchill Livingstone, Edinburgh London New YorkGoogle Scholar
  21. 21.
    DiCorleto PE (1984) Cultured endothelial cells produce multiple growth factors for connective tissue cells. Exp Cell Res 153:167–172CrossRefGoogle Scholar
  22. 22.
    Busse R, Trogisch G, Bassenge E (1985) The role of endothelium in the control of vascular tone. Basic Res Cardiol 80: 475–490PubMedCrossRefGoogle Scholar
  23. 23.
    Davies PF (1984) Quantitative aspects of endocytosis in cultured endothelial cells. In: Jaffe EA (ed) Biology of Endothelial Cells. Martinus Nijhoff Publ, BostonGoogle Scholar
  24. 24.
    Bar RS (1982) Interactions of insulin and insulin-like growth factors with endothelial cells. Ann NY Acad Sci 401:150–162PubMedCrossRefGoogle Scholar
  25. 25.
    Henriksen T, Mahoney EM, Steinberg D (1982) Interactions of plasma lipoproteins with endothelial cells. Ann NY Acad Sci 401:102–116PubMedCrossRefGoogle Scholar
  26. 26.
    Gimbrone MA jr (1986) Vascular endothelium — nature’s blood container. In: Gimbrone MA jr (ed) Vascular Endothelium in Hemostasis and Thrombosis. Churchill Livingstone, Edinburgh London New YorkGoogle Scholar
  27. 27.
    Busch C, Cancilla PA, DeBault LE, Goldsmith JC, Owen WG (1982) Use of endothelium cultured on microcarriers as a model for the microcirculation. Lab Invest 47:498–504PubMedGoogle Scholar
  28. 28.
    Roitt IM (1984) Leitfaden der Immunologie. Steinkopff, DarmstadtGoogle Scholar
  29. 29.
    Kaufmann SHE (1987) Lymphokine, Interleukine, Zytokine — Funktion und Wirkungsmechanismus. J Am Coll Cardiol 7: 681–687Google Scholar
  30. 30.
    Bonavida B, Gifford GE, Kirchner H, Old JL (1988) Tumor Necrosis Factor/Cachectin and Related Cytokines. Karger, BaselGoogle Scholar
  31. 31.
    Dinarello CA, Mier JW (1987) Lymphokines. New Engl J Med 8: 940–945CrossRefGoogle Scholar
  32. 32.
    Bevilacqua MP, Wheeler ME, Pober JS, Fiers W, Mendrick DL, Cotran RS, Gimbrone MA jr (1987) Endothelial-dependent mechanisms of leukocyte adhesion: regulation by IL-1 and TNF. In: Movat HZ (ed) Leukocyte Emigration and its Sequelae. Karger, BaselGoogle Scholar
  33. 33.
    Larrick JW, Graham D, Toy K, Lin LS, Senyk G, Fendly BM (1987) Recombinant tumor necrosis factor causes activation of human granulocytes. Blood 69: 640–644PubMedGoogle Scholar
  34. 34.
    Gamble JR, Harlan JM, Klebanoff SJ, Vades MA (1985) Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc Natl Acad Sci USA 82: 8667–8671PubMedCrossRefGoogle Scholar
  35. 35.
    Pober JS, Gimbrone MA jr, Lapierre LA, Mendrick DL, Fiers W, Rothlein R, Springer TA (1986) Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon. J Immunol 137:1893–1896PubMedGoogle Scholar
  36. 36.
    Nawroth PP, Stern DM (1986) Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med 163: 740–745PubMedCrossRefGoogle Scholar
  37. 37.
    Aggarwal BB (1987) Tumor necrosis factors — their structure and pleiotropic biological effects. Drugs Fut 12: 891–898Google Scholar
  38. 38.
    Old LJ (1988) Antitumor activity of microbial products and tumor necrosis factor. In: Bonavida B, Gifford GE, Kirchner H, Old LJ (eds) Tumor Necrosis Factor/Cachectin and Related Cytokines. Karger, BaselGoogle Scholar
  39. 39.
    Feinman R, Henriksen-DiStefano D, Tsujimoto M, Vilcek J (1987) Tumor necrosis factor is an important mediator of tumor cell killing by human monocytes. J Immun 138: 635–640PubMedGoogle Scholar
  40. 40.
    Beller DJ, Farr AG, Unanue ER (1978) Regulation of lymphocyte proliferation and differentiation by macrophages. Fed Proc 37: 91–96PubMedGoogle Scholar
  41. 41.
    Maizel AL, Lachman LB (1984) Biology of disease — control of human lymphocyte proliferation by soluble factors. Lab Invest 50: 369–377PubMedGoogle Scholar
  42. 42.
    Mizel SB (1982) The interleukins — regulation of lymphocyte differentiation, proliferation, and functional activation. In: Mihich E (ed) Biological Responses in Cancer. Plenum Press, New YorkGoogle Scholar
  43. 43.
    Freudenberg M, Keppler D, Galanos C (1986) Requirement for lipopolysaccharide-responsive macrophages in D-galactosamine-induced sensitization to endotoxin. Infect Immun 51: 891–895PubMedGoogle Scholar
  44. 44.
    Chenoweth DE, Goodman MG (1983) The C5a receptor of neutrophils and macrophages. Agents Actions 12: 252–263Google Scholar
  45. 45.
    Trinchieri G, Perussia B (1985) Immune interferon — a pleiotropic lymphokine with multiple effects. Immunol Today 6: 131–141CrossRefGoogle Scholar
  46. 46.
    Hogg J (1987) Neutrophil kinetics and lung injury. Physiol Rev 67: 1249–1295PubMedGoogle Scholar
  47. 47.
    Libby P, Ordovas JM, Auger KR, Robbins AH, Birinyi LK, Dinarello CA (1986) Endotoxin and tumor necrosis factor induce interleukin-1 gene expression in adult human vascular endothelial cells. Am J Pathol 124: 179–185PubMedGoogle Scholar
  48. 48.
    Bussolino F, Breviario F, Tetta C, Aglietta M, Sanavio F, Mantovani A, Dejana E (1986) Interleukin 1 stimulates platelet activating factor production in cultured human endothelial cells. Pharmacol Res Commun 18: 133–137PubMedCrossRefGoogle Scholar
  49. 49.
    Müller-Berghaus G (1987) Septicemia and the vussel wall. In: Verstraete M et al (eds) Thrombosis and Haemostasis. Leuven University Press, LeuvenGoogle Scholar
  50. 50.
    Grega GI (1986) Contractile elements of endothelial cells as potential targets for drug action. Trends Pharmacol 7: 452–457CrossRefGoogle Scholar
  51. 51.
    Cotran RS, Pober JS (1988) Endothelial activation. Its role in inflammatory and immune reactions. In: Simionescu N, Simionescu M (eds) Endothelial Cell Biology in Health and Disease. Plenum Press, New YorkGoogle Scholar
  52. 52.
    Montesano R, Mossaz A, Ryser JE, Orci L, Vassalli P (1984) Leukocyte interleukins induce cultured endothelial cells to produce a highly organized, glycosaminoglycan-rich pericellular matrix. J Cell Biol 99:1706–1715PubMedCrossRefGoogle Scholar
  53. 53.
    Gimbrone MA jr, Bevilacqua MP, Wheeler ME (1987) Endothelial-dependent mechanisms of leukocyte adhesion. Thromb Haemostas 58: 325/A1184Google Scholar
  54. 54.
    Sanchez-Madrid F, Nagy J, Robbins E, Simon P, Springer TA (1983) A human leukocyte differentiation antigen family with distinct α-subunits and a common β-subunit: the lymphocyte function-associated antigen (LFA-1), the 3bi complement receptor (OKM1/Mac-1), and the p 150,95 molecule. J Exp Med 158:1785–1803PubMedCrossRefGoogle Scholar
  55. 55.
    Sturk A, Schaap MCL, ten Cate JW, Heymans HSA, Schutgens RBH, Przyrembel H, Borst P (1987) Platelet-activating factor: mediator of the third pathway of platelet aggregation? J Clin Invest 79:344–350PubMedCrossRefGoogle Scholar
  56. 56.
    Bagge U, Braide M (1985) Der Einfluß der Leukozyten auf die Mikrozirkulation im Schock. In: Meß-mer K, Hammersen F (Hrsg) Entzündung und Rheologie der Leukozyten. Karger, BaselGoogle Scholar
  57. 57.
    Stossel TP (1974) Phagocytosis. New Engl J Med 290: 717–723, 774-780, 833-839PubMedCrossRefGoogle Scholar
  58. 58.
    Henson PM (1981) Neutrophil secretion: Mechanisms and consequences in inflammation. In: Venge P, Lindbom A (eds) The Inflammatory Process. An Introduction to the Study of Cellular and Humoral Mechanisms. Almovist & Wiksell, StockholmGoogle Scholar
  59. 59.
    Henriksen T, Mahoney EM, Steinberg D (1981) Enhanced macrophage degradation of low-density lipoprotein previously incubated with cultured endothelial cells. Proc Natl Acad Sci USA 78: 6499–6503PubMedCrossRefGoogle Scholar
  60. 60.
    Mazzone T, Jensen M, Chait A (1983) Human arterial-wall cells secrete factors that are chemotactic for monocytes. Proc Natl Acad Sei USA 80: 5094–5097CrossRefGoogle Scholar
  61. 61.
    Hirschberg H, Braathen LR, Thorsby E (1982) Antigen presentation by vascular endothelial cells and epidermal Langerhans cells — the role of HLA-DR. Immunol Rev 66: 57–77PubMedCrossRefGoogle Scholar
  62. 62.
    Collins T, Korman AI, Wake CT, Boss IM, Kappes DI, Fiers N, Ault KA, Gimbrone MA, Strominger IL, Pober JS (1984) Immune interferon activates multiple class-II-major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts. Proc Natl Acad Sci USA 81: 4917–4921PubMedCrossRefGoogle Scholar
  63. 63.
    Wagner CR, Vetto RM, Burger DR (1984) The mechanism of antigen presentation by endothelial cells. Immunobiology 168: 453–469PubMedCrossRefGoogle Scholar
  64. 64.
    Joris I, Billingham ME, Majno G (1984) Human coronary arteries — an ultrastructural search for the early changes of atherosclerosis. Fed Proc 43: 710–716Google Scholar
  65. 65.
    Ulutin ON (1986) Atherosclerosis and hemostasis — a review. Semin Thromb Hemostas 12:156–174CrossRefGoogle Scholar
  66. 66.
    Phelps P, McCarty DJ (1966) Crystal-induced inflammation in canine joints. II. Importance of PMN. J Exp Med 124:115–126Google Scholar
  67. 67.
    Dayer JM, Bréard J, Chess L, Krane SM (1979) Participation of monocyte-macrophages and lymphocytes in the production of a factor that stimulates collagenase and prostaglandin release by rheumatoid synovial cells. J Clin Invest 64: 1386–1392PubMedCrossRefGoogle Scholar
  68. 68.
    Cochrane CG, Unanu ER, Dixon FJ (1965) A role of PMN and complement in nephrotoxic nephritis. J Exp Med 122: 99–116PubMedCrossRefGoogle Scholar
  69. 69.
    Eisenbarth GS (1986) Type I diabetes mellitus, a chronic autoimmune disease. New Engl J Med 314: 1360–1368PubMedCrossRefGoogle Scholar
  70. 70.
    Mandrup-Poulsen T, Bendtzen K, Dinarello CA, Nerup J (1987) Human tumor necrosis factor potentiates human interleukin 1-mediated rat pancreatic beta-cell cytotoxicity. J Immunol 139:4077–4082PubMedGoogle Scholar
  71. 71.
    Benveniste J, Coëffier E (1985) Die Wechselbeziehungen zwischen Leuko-und Thrombozyten während der Entzündung. In: Meßmer K, Hammersen F (Hrsg) Entzündung und Rheologie der Leukozyten. Karger, BaselGoogle Scholar
  72. 72.
    Gaethgens P, Ley K, Pries AR, Müller R (1985) Mutual interaction between leukocytes and microvascular blood flow. Progr Appl Microcirc 7:15–28Google Scholar
  73. 73.
    Smedegård G (1985) Die Mediatoren der entzündlich gesteigerten Gefäßpermeabilität. In: Meßmer K, Hammersen F (Hrsg) Entzündung und Rheologie der Leukozyten. Karger, BaselGoogle Scholar
  74. 74.
    Dahlen S, Bjork J, Hedqvist P, Arfors K, Hammarstrom S, Lindgren J, Samuelsson B (1981) Leuko-trienes promote plasma leakage and leukocyte adhesion in postcapillary venules. Proc Natl Acad Sci USA 78: 3887–3896PubMedCrossRefGoogle Scholar
  75. 75.
    Humphrey DM, McManus LM, Hanahan DJ, Pinckard RN (1984) Morphologic basis of increased vascular permeability induced by acetyl glyceryl ether phosphorylcholine. Lab Invest 50: 16–25PubMedGoogle Scholar
  76. 76.
    Nees S (1989) Zelluläre und humorale Reaktionen und Interaktionen im Bereich der Gefäßwand während eines Kreislaufschocks. In: Peter K (Hrsg) Anästhesiologie und Intensivmedizin. Springer, BerlinGoogle Scholar
  77. 77.
    Stevens JH, Raffln TA (1984) Adult respiratory distress syndrome. Postgrad Med 60: 505–513CrossRefGoogle Scholar
  78. 78.
    Goris RJA (1987) The adult respiratory distress syndrome and multiple-organ failure. Intens Care 1: 1–7Google Scholar
  79. 79.
    Majno G, Joris I, Zand T (1985) Arteriosclerosis — new horizons. Hum Pathol 16: 3–5PubMedCrossRefGoogle Scholar
  80. 80.
    Lee KT (1985) Atherosclerosis, Vol 454, Ann NY Acad Sci, New YorkGoogle Scholar
  81. 81.
    Coleridge-Smith PD, Thomas P, Scurr JH, Dormandy JA (1988) Causes of venous ulceration — a new hypothesis. Brit Med J 296:1726–1727CrossRefGoogle Scholar
  82. 82.
    Nash GB, Thomas PRS, Dormandy JA (1988) Abnormal flow properties of white blood cells in patients with severe ischaemia of the leg. Brit Med J 296:1699–1701CrossRefGoogle Scholar
  83. 83.
    Vermes I, Strik F (1988) Altered leukocyte rheology in patients with chronic cerebrovascular disease. Stroke 19: 631–633PubMedCrossRefGoogle Scholar
  84. 84.
    Barckow D, Schirop T(1987) Klinik und Prognose des akuten Lungenversagens. Atemw Lungenkrkh 13: 527–533Google Scholar
  85. 85.
    Täte RM, Repine JE (1983) Neutrophils and the adult respiratory distress syndrome. Am Rev Respir Dis 128: 3–15Google Scholar
  86. 86.
    Hammerschmidt DE, Harris PD, Wayland JH (1981) Complement-induced granulocyte aggregation in vivo. Am J Pathol 102:146–150PubMedGoogle Scholar
  87. 87.
    Nuytinck JKS, Goris RJA, Redl H, Schlag G, van Munster PJJ (1986) Posttraumatic complications and inflammatory mediators. Arch Surg 121: 886–890PubMedCrossRefGoogle Scholar
  88. 88.
    Barroso-Aranda J, Schmid-Schönbein GW (1989) Transformation of neutrophils as measured by NBT-reduction as indicator of irreversibility in hemorrhagic shock. Am J Physiol, im DruckGoogle Scholar
  89. 89.
    Blombery PA (1987) Intermittent claudication — an update on management. Drugs 34: 404–410PubMedCrossRefGoogle Scholar
  90. 90.
    Heinrich F (1986) Akutes Cor pulmonale — Diagnostik und Therapie in der Klinik. Therapiewoche 36: 3233–3241Google Scholar
  91. 91.
    Demling RH (1986) Cardiopulmonary dysfunction from sepsis — diagnosis and treatment. In: Proctor RA (ed) Handbook of Endotoxin Vol 4. Elsevier, Amsterdam New York OxfordGoogle Scholar
  92. 92.
    Tracey KJ, Fong Y, Hesse DG, Manogue KR, Annette TL, Kuo GC, Lowry SF, Cerami A (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330: 662–664PubMedCrossRefGoogle Scholar
  93. 93.
    Weigelt JA, Norcross JF, Borman KR, Snyder WH (1985) Early steroid therapy for respiratory failure. Arch Surg 120: 536–540PubMedCrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG, Darmstadt 1990

Authors and Affiliations

  • M. M. Schönharting
    • 1
  1. 1.Hoechst AG, Werk Albert Klinische ForschungWiesbaden 12Deutschland

Personalised recommendations