Comparative effects of calcium antagonists and of inotropic agents on the development of hereditary cardiomyopathy in the hamster

  • G. Jasmin
  • L. Proschek
Conference paper


The pathology of hereditary cardiomyopathy in the hamster has been well documented in recent years (1–10). This primary congestive type of cardiomyopathy develops in characteristic, well-defined and predictable stages, namely: 1. a necrotic phase with multifocal cardiac lesions, which develop in animals between 30 and 120 days of age; 2. a healing phase with scar formation and progressive dilatation of the atrial and ventricular wall, occurring between 120 and 200 days and, finally, 3. a terminal phase with moderate to severe heart failure between 200 and 300 days (2). The changes in the heart are not visible under a light microscope until the animal has reached 30 days. These lesions reflect a more generalized myopathic process and they probably derive from the same genetic molecular defect.


Calcium Antagonist Syrian Hamster Cardiac Lesion Respiration Control Ratio Necrotic Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jasmin G, Eu HA (1979) Cardiomyopathy of hamster dystrophy. Ann NY Acad Sci 317:46–58PubMedGoogle Scholar
  2. 2.
    Jasmin G, Proschek I (1982) Hereditary polymyopathy and cardiomyopathy in the Syrian hamster. I. Progression of heart and skeletal muscle lesions in the UM-X7.1 line. Muscle & Nerve 5:20–25CrossRefGoogle Scholar
  3. 3.
    Factor SM, Minase T, Cho S. Dominitz R, Sonnenblick EH (1982) Microvascular spasm in the cardiomyopathic Syrian hamsters: A preventable cause of local myocardial necrosis. Circulation 66:342–354PubMedCrossRefGoogle Scholar
  4. 4.
    Berry B, Poulsen R, Yunge L, Bruneval P, Fitchell D, De Chastonay C, Gabbiani G, Huttner I (1983) Numerical densities of intramembrane partielles in the cardiac sarcolemma of normal and myopathic Syrian hamsters. J Mol Cell Cardiol 15:503–513PubMedCrossRefGoogle Scholar
  5. 5.
    Wiegand V, Stroh E, Henniges A, Lossnitzer K, Kreuzer H (1983) Altered distribution of myosin isoenzymes in the cardiomyopathic Syrian hamsters (BIO 8.262). Basic Res Cardiol 78:665–670PubMedCrossRefGoogle Scholar
  6. 6.
    Malhotra A, Karell M, Scheuer J (1985) Multiple cardiac contractile protein abnormalities in myopathic Syrian hamsters. J Mol Cell Cardiol 17:95–107PubMedCrossRefGoogle Scholar
  7. 7.
    Makino N, Jasmin G, Beamish RE, Dhalla NS (1985) Sarcolemmal Na+-Ca++ + exchange during the development of genetically determined cardiomyopathy. Biochem Biophys Res Comm 133:491–497PubMedCrossRefGoogle Scholar
  8. 8.
    Sievers R, Wikman-Coffelt J, Parmley WW, Jasmin G (1986) Verapamil preserves adenine nucleotide pool in cardiomyopathic Syrian hamsters. Amer J Physiol H22-H28Google Scholar
  9. 9.
    Wagner JA, Reynolds IJ, Weissman HF, Dudek P, Weisfeld ML, Snyder SH (1986) Calcium antagonist receptors in cardiomyopathic hamster: Selective increase in heart, muscle, brain. Science 232:515–518PubMedCrossRefGoogle Scholar
  10. 10.
    Jasmin G, Proschek L, Brisson G, Dhalla NS (1987) The hypothyroid State in cardiomyopathic hamsters. In: Dhalla NS, Singal PK, Beamish RE (eds.) Pathophysiology of heart disease. Martinus Nijhoff, Boston, in pressGoogle Scholar
  11. 11.
    Fleckenstein A (1983) Calcium antagonism in heart and smooth muscle. John Wiley & Sons, New York, pp 153–164Google Scholar
  12. 12.
    Lindenmayer CE, Harigaya S, Bajusz E, Schwartz A (1970) Oxidative phosphorylation and calcium transport of mitochondria isolated from cardiomyopathic hamster hearts. J Mol Cell Cardiol 1:249–259PubMedCrossRefGoogle Scholar
  13. 13.
    Wrogemann K, Nylen E (1978) Mitochondrial calcium overloading in cardiomyopathic hamsters. J Mol Cell Cardiol 10:185–195PubMedCrossRefGoogle Scholar
  14. 14.
    Proschek L, Jasmin G (1982) Hereditary polymyopathy and cardiomyopathy in the Syrian hamster. II. Development of heart necrotic changes in relation to defective mitochondrial function. Muscle & Nerve 5:26–32CrossRefGoogle Scholar
  15. 15.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  16. 16.
    Jasmin G, Bajusz E (1973) Polymyopathie et cardiomyopathie héréditaire chez le hamster de Syrie. Inhibition sélective des lésions du myocarde. Ann Anat Pathol 18:49–66Google Scholar
  17. 17.
    Jasmin G, Bajusz E (1975) Prevention of myocardial degeneration in hamsters with hereditary cardiomyopathy. In: Fleckenstein A, Rona G (eds.) Recent Advances Pathophysiology and Morphology of Myocardial Cell Alteration. University Park Press, Baltimore, pp 219–229Google Scholar
  18. 18.
    Jasmin G, Solymoss B (1975) Prevention of hereditary cardiomyopathy in the hamster by Verapamil and other agents. Proc Soc Exp Biol Med 149:193–198.PubMedGoogle Scholar
  19. 19.
    Jasmin G, Proschek L (1980) Prevention of myocardial degeneration in hamsters with hereditary cardiomyopathy. In: Fleckenstein A, Roskamm H (eds.) Calcium-Antagonismus. Springer, Berlin Heidelberg New York, pp 144–150CrossRefGoogle Scholar
  20. 20.
    Jasmin G, Proschek L (1984) Comparative effects of Ca slow channel blockers on the hamster’s hereditary cardiomyopathy. Symposium on Ca channel blocking agents. In: Spevelakis N, Caulfield JB (eds.) Calcium Antagonists. Mechanism of Action of Cardiac Muscle and Vascular Smooth Muscle. Martinus Nijhoff, Boston, pp 229–239Google Scholar
  21. 21.
    Jasmin G, Proschek L, Déchesne C (1986) The histochemistry of ventricular α- and β-myosin heavy chain (HC) in normal and cardiomyopathic hamsters treated with thyroxin (T4). J Mol Cell Cardiol 18 (Suppl 1):233Google Scholar
  22. 22.
    Bouvagnet P, Léger J, Pons F, Déchesne C, Léger JJ (1982) Fiber types and myosin types in human atrial and ventricular myocardium. An anatomical description. Circ Res 55:794–804Google Scholar
  23. 23.
    Jasmin G, Proschek L (1983) The paradoxical effect of Isoproterenol on hamster hereditary polymyopathy. Muscle & Nerve 6:408–415CrossRefGoogle Scholar
  24. 24.
    Jasmin G, Proschek L (1984) Calcium and myocardial cell injury. An appraisal in the cardiomyopathic hamster. Can J Physiol Pharmacol 62:891–898.PubMedCrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt 1989

Authors and Affiliations

  • G. Jasmin
    • 1
  • L. Proschek
    • 1
  1. 1.Division of Medicine, Dept. of PathologyUniversity of MontrealMontreal, P. Q.Canada

Personalised recommendations