Milk Proteins pp 112-123 | Cite as

Structure and Variability of Milk Proteins

  • B. Ribadeau-Dumas


A protein molecule is best characterized when its tertiary structure has been elucidated by high resolution x-ray crystallography. As far as the main milk proteins are concerned, this was achieved in 1986 for two of them, baboon α-lactalbumin [1] and bovine β-lactoglobulin [2]. No one casein has ever been crystallized and, owing to their self-aggregation properties, it may be that these proteins will never be obtained in crystalline form. However, as for the other milk proteins, a great deal of information can be deduced from their primary structures. Indeed, for any biologically active protein, genetic variability does not usually affect the tertiary structure to a large extent even if the activity is strongly modified. A good example of this statement is the phylogenic relationship between α-lactalbumin and lysozyme that we shall discuss later on.


Whey Protein Milk Protein Casein Micelle Disulphide Bridge Complete Amino Acid Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stuart DI, Acharya KR, Walker NPC, Smith SG, Lewis M, Phillips DC (1986) a-Lactalbumin possesses a novel calcium binding loop. Nature 324: 84–87PubMedCrossRefGoogle Scholar
  2. 2.
    Papiz MZ, Sawyer L, Eliopoulos EE, North ACT, Findlay JBC, Sivaprasadarao R, Jones TA, Newcomer ME, Kraulis PJ (1986) The structure of ß-lactoglobulin and its similarity to plasma retinol-binding protein. Nature 324: 383–385PubMedCrossRefGoogle Scholar
  3. 3.
    Mepham TB, Gaye P, Mercier JC (1982) Biosynthesis of milk proteins. In: Fox PE (ed) Developments in Dairy Chemistry, vol 1. Applied Science Publishers, London New York, pp 115–156Google Scholar
  4. 4.
    Ebner KE, Brodbeck U (1968) Biological role of a-lactalbumin: a review. J Dairy Sci 51: 317–322PubMedCrossRefGoogle Scholar
  5. 5.
    Brew K, Castellino FJ, Vanaman TC, Hill RL (1970) The complete amino acid sequence of bovine a-lactalbumin. J Biol Chem 245: 4570–4582PubMedGoogle Scholar
  6. 6.
    Shewale JG, Sinha SK, Brew K (1984) Evolution of a-lactalbumins. The complete amino acid sequence of the a-lactalbumin from a marsupial ( Macropus rufogriseus) and corrections to regions of sequence in bovine and goat a-lactalbumins. J Biol Chem 259: 4947–4956PubMedGoogle Scholar
  7. 7.
    Hurley WL, Schuler LA (1987) Molecular cloning and nucleotide sequence of a bovine a-lactalbumin cDNA. Gene 61: 119–122PubMedCrossRefGoogle Scholar
  8. 8.
    Vilotte JL, Soulier S, Mercier JC, Gaye P, Hue-Delahaye D, Furet JP (1987) Complete nucleotide sequence of bovine a-lactalbumin gene: comparison with its rat counterpart. Biochimie 69: 609–620PubMedCrossRefGoogle Scholar
  9. 9.
    Qasba PK, Surinder KS (1984) Similarity of the nucleotide sequence of rat a-lactalbumin and chicken lysozyme genes. Nature 308: 377–380PubMedCrossRefGoogle Scholar
  10. 10.
    Hiraoka Y, Segawa T, Kuwajima K, Sugai S, Murai N (1980) a-Lactalbumin: a calcium metallo-protein. Biochem Biophys Res Commun 95: 1098–1104CrossRefGoogle Scholar
  11. 11.
    Kronman MJ, Sinha SK, Brew K (1981) Characteristics of the binding of Ca’ and other divalent metal ions to bovine a-lactalbumin. J Biol Chem 256: 8582–8587PubMedGoogle Scholar
  12. 12.
    Braunitzer G, Chen R, Schrank B, Stangl A (1972) Automatische Sequenzanalyse eines Proteins (ß-lactoglobulin AB). Hoppe-Seyler’s Z Physiol Chem 353: 832–834PubMedCrossRefGoogle Scholar
  13. 13.
    Jamieson AC, Vandeyar MA, Kang YC, Kinsella JE, Batt CA (1987) Cloning and nucleotide sequence of the bovine ß-lactoglobulin gene. Gene 61: 85–90PubMedCrossRefGoogle Scholar
  14. 14.
    Pervaiz S, Brew K (1985) Homology of ß-lactoglobulin, serum retinol-binding protein, and protein HC. Science 228: 335–337PubMedCrossRefGoogle Scholar
  15. 15.
    Godovac-Zimmermann J, Conti A, Liberatori J, Braunitzer G (1985) Homology between the primary structures of /3-lactoglobulin and human retinol-binding protein: evidence for a similar biological function? Hoppe-Seyler’s Z Physiol Chem 366: 431–434Google Scholar
  16. 16.
    Fugate RD, Song PS (1980) Spectroscopic characterization of ß-lactoglobulin-retinol complex. Biochim Biophys Acta 625: 28–42PubMedGoogle Scholar
  17. 17.
    Drayna D, Fielding C, McLean J, Bear B, Castro G, Chem E, Comstock L, Henzel W, Kohr W, Rhee L, Wion K, Lawn R (1986) Cloning and expression of human apolipoprotein D eDNA. J Biol Chem 261: 16535–16539PubMedGoogle Scholar
  18. 18.
    Lee KH, Wells RG, Reed RR (1987) Isolation of an olfactory eDNA: similarity to retinolbinding protein suggests a role in olfaction. Science 235: 1053–1056PubMedCrossRefGoogle Scholar
  19. 19.
    Deutsch HF, Smith VR (1957) Intestinal permeability to proteins in the newborn herbivore. Am J Physiol 191: 271–276PubMedGoogle Scholar
  20. 20.
    Pierce AE (1960) ß-Lactoglobulin in the urine of the new-born suckled calf. Nature 188: 940–941PubMedCrossRefGoogle Scholar
  21. 21.
    Jenness R (1982) Interspecies comparison of milk proteins. In: Fox PF (ed) Developments in Dairy Chemistry, vol 1. Applied Science Publishers, London New York, pp 87–114Google Scholar
  22. 22.
    Lice YSV, Low TLK, Putnam FW (1979) Primary structure of a human IgAl immunoglobulin, I, II, III, IV. J Biol Chem 254: 2839–2874Google Scholar
  23. 23.
    Mc Kenzie RM, Larson BL (1978) Purification and partial characterization of a unique group of phosphoproteins from rat milk whey. J Dairy Sci 61: 723–728CrossRefGoogle Scholar
  24. 24.
    Piletz JE, Heinlen M, Ganschow RE (1981) Biochemical characterization of a novel whey protein from murine milk. J Biol Chem 256: 11509–11516PubMedGoogle Scholar
  25. 25.
    Dandekar AM, Robinson EA, Appella E, Qasba PK (1982) Complete sequence analysis of eDNA clones encoding rat whey phosphoproteins: homology to a protease inhibitor. Proc Natl Acad Sci USA 79: 3987–3991PubMedCrossRefGoogle Scholar
  26. 26.
    Hennighausen LG, Sippel AE (1982) Mouse whey acidic protein is a novel member of the family of “four-disulfide core” proteins. Nucleic Acids Res 10: 2677–2684PubMedCrossRefGoogle Scholar
  27. 27.
    Schmidt DG (1982) Association of caseins and casein micelle structure. In: Fox PF (ed) Developments in dairy chemistry, vol 1. Applied Science Publishers, London New York, pp 61–86Google Scholar
  28. 28.
    Dalgleish DG (1982) The enzymatic coagulation of milk. In: Fox PF (ed) Developments in dairy chemistry, vol 1. Applied Science Publishers, London New York, pp 157–187Google Scholar
  29. 29.
    Mercier JC (1981) Phosphorylation of caseins, present evidence for an amino acid triplet code post-translationally recognized by specific kinases. Biochimie 63: 1–17PubMedCrossRefGoogle Scholar
  30. 30.
    Mercier JC, Grosclaude F, Ribadeau-Dumas B (1971) Structure primaire de la caseine aS1 bovine. Séquence complète. Eur J Biochem 23: 41–51PubMedCrossRefGoogle Scholar
  31. 31.
    Nagao M, Maki M, Sasaki R, Chiba H (1984) Isolation and sequence analysis of bovine aS1-casein eDNA clone. Agric Biol Chem 48: 1663–1667CrossRefGoogle Scholar
  32. 32.
    Stewart AF, Willis IM, Mc Kinlay AG (1984) Nucleotide sequences of bovine aS1- and x-casein cDNAs. Nucleic Acids Res 12: 3895–3907PubMedCrossRefGoogle Scholar
  33. 33.
    Nagao M, Nakagawa Y, Ishii A, Sasaki R, Harutaka H, Chiba H (1988) Expression of bovine aS1-casein eDNA in Escherichia coli. Agric Biol Chem 52: 191–200CrossRefGoogle Scholar
  34. 34.
    Brignon G, Ribadeau-Dumas B, Mercier JC, Pelissier JP, Das BC (1977) Complete amino acid sequence of bovine aS2-casein. FEBS Lett 76: 274–279PubMedCrossRefGoogle Scholar
  35. 35.
    Brignon G (1979) Determination de la structure primaire de la caseine aS2 bovine. Nouvelles évidences, concernant le code de phosphorylation des caséines. Thesis, Paris VII UniversityGoogle Scholar
  36. 36.
    Stewart AF, Bonsing J, Beattie CW, Shah F, Willis IM, Mackinlay AG (1987) Complete nucleotide sequences of bovine aS2- and ß-casein cDNAs: comparisons with related sequences in other species. Mol Biol Evol 4: 231–241PubMedGoogle Scholar
  37. 37.
    Ribadeau-Dumas B, Brignon G, Grosclaude F, Mercier JC (1972) Structure primaire de la caseine ß bovine. Sequence complète. Eur J Biochem 25: 505–514Google Scholar
  38. 38.
    Caries C, Huet JC, Ribadeau-Dumas B (1988) A new strategy for primary structure determination of proteins: application to bovine ß-casein. FEBS Lett 229: 265–272CrossRefGoogle Scholar
  39. 39.
    Bayev AA, Smirnov IK, Gorodestsky (1987) The primary structure of bovine ß-casein eDNA. Mol Biol 21: 255–265Google Scholar
  40. 40.
    Jimenez-Florez R, Kang YC, Richardson T (1987) Cloning and sequence analysis of bovine fi-casein eDNA. Biochem Biophys Res Commun 142: 617–621CrossRefGoogle Scholar
  41. 41.
    Mercier JC, Brignon G, Ribadeau-Dumas B (1973) Structure primaire de la caseine x bovine. Séquence complète. Eur J Biochem 35: 222–235PubMedCrossRefGoogle Scholar
  42. 42.
    Jollès J, Alais C, Jollès P (1968) The tryptic peptide with the rennin sensitive linkage of cow’s x-casein. Biochim Biophys Acta 168: 591–593PubMedGoogle Scholar
  43. 43.
    Zevaco C, Ribadeau-Dumas B (1984) A study of the carbohydrate binding sites of bovine x-casein using high performance liquid chromatography. Milchwissenschaft 39: 206–210Google Scholar
  44. 44.
    Saito T, Itoh T, Adachi S, Susuki T, Usui T (1982) A new hexasaccharide chain isolated from bovine colostrum x-casein taken at the time of parturition. Biochim Biophys Acta 719: 309–317PubMedCrossRefGoogle Scholar
  45. 45.
    Caries C, Martin P (1985) Kinetic study of the action of bovine chymosin and pepsin A on bovine x-casein. Arch Biochem Biophys 242: 411–416CrossRefGoogle Scholar
  46. 46.
    Kang YC, Richardson T (1988) Molecular cloning and expression of bovine x-casein in Escherichia coli. J Dairy Sci 71: 29–40PubMedCrossRefGoogle Scholar
  47. 47.
    Grosclaude F (1988) Le polymorphisme génétique des principales lactoproteines bovines. Relations avec la quantité, la composition et les aptitudes fromagères du lait. Prod Anim 1: 5–17Google Scholar
  48. 48.
    Mc Lean D, Graham ERB, Ponzoni RW (1987) Effects of milk protein variants and composition on heat stability of milk. J Dairy Res 54: 219–235CrossRefGoogle Scholar
  49. 49.
    Boulanger A, Grosclaude F, Mahé MF (1984) Polymorphisme des caséines aS1 et aS2 de la chèvre ( Capra hircus ). Genet Sel Evol 16: 157–176CrossRefGoogle Scholar
  50. 50.
    Grosclaude F, Mahé MF, Brignon G, Di Stasio L, Jeunet R (1987) A Mendelian polymorphism underlying quantitative variations of goat aS1-casein. Genet Sel Evol 19: 399–412CrossRefGoogle Scholar
  51. 51.
    Brignon G, Mahé MF, Grosclaude F, Ribadeau-Dumas B (1988) submitted for publicationGoogle Scholar
  52. 52.
    Messer M, Elliott C (1987) Changes in a-lactalbumin, total lactose, UDP-galactose hydrolase and other factors in tammar wallaby ( Macropus eugenii) milk during lactation. Aust J Biol Sci 40: 37–46Google Scholar
  53. 53.
    Godovac-Zimmermann J, Conti A, James L, Napolitano L (1988) Microanalysis of the amino acid sequence of monomeric ß-lactoglobulin I from donkey ( Equus asinus) milk. Biol Chem Hoppe-Seyler 369: 171–179PubMedCrossRefGoogle Scholar
  54. 54.
    Brignon G, Chtourou A, Ribadeau-Dumas B (1985) Does ß-lactoglobulin occur in human milk? J Dairy Res 52: 249–254PubMedCrossRefGoogle Scholar
  55. 55.
    Chtourou A, Brignon G, Ribadeau-Dumas B (1985) Quantification of ß-casein in human milk. J Dairy Res 52: 239–247PubMedCrossRefGoogle Scholar
  56. 56.
    Richardson BC, Creamer LK (1976) Comparative micelle structure. V. The isolation and characterization of the major bovine caseins. NZJ Dairy Sci Technol 11: 46–53Google Scholar
  57. 57.
    Addeo F, Mercier JC, Ribadeau-Dumas B (1977) The caseins of buffalo milk. J Dairy Res 44: 455–468CrossRefGoogle Scholar
  58. 58.
    Richardson BC, Creamer LK (1974) Comparative micelle structure III. The isolation and chemical characterization of caprine ß1-casein and ß2-casein. Biochim Biophys Acta 365: 133–137PubMedGoogle Scholar
  59. 59.
    Brignon G, Chtourou A, Ribadeau-Dumas B (1985) Preparation and amino acid sequence of human x-casein. FEBS Lett 188: 48–54PubMedCrossRefGoogle Scholar
  60. 60.
    Cerning-Beroard J, Zevaco C (1984) Purification and characterization of porcine x-casein. J Dairy Res 51: 259–266CrossRefGoogle Scholar
  61. 61.
    Gaye P, Gautron JP, Mercier JC, Hazé G (1977) Amino terminal sequences of the precursors of ovine caseins. Biochem Biophys Res Commun 79: 903–911PubMedCrossRefGoogle Scholar
  62. 62.
    Hobbs AA, Rosen JM (1982) Sequence of rat a-and x-casein mRNAs: evolutionary comparison of the calcium dependent rat casein multigene family. Nucleic Acids Res 10: 8079–8097PubMedCrossRefGoogle Scholar
  63. 63.
    Jones WK, Yu-Lee LY, Clift SM, Brown TL, Rosen JM (1985) The rat casein multigene family. Fine structure and evolution of the ß-casein gene. J Biol Chem 260: 7042–7050PubMedGoogle Scholar
  64. 64.
    Godovac-Zimmermann J, Braunitzer G (1987) Modern aspects of the primary structure and function of ß-lactoglobulin. Milchwissenschaft 42: 294–297Google Scholar
  65. 65.
    Godovac-Zimmermann, Conti A, Liberatori J, Braunitzer G (1985) The amino acid sequence of ß-lactoglobulin II from horse colostrum: ß-lactoglobulins are retinol-binding proteins. Hoppe-Seyler’s Z Physiol Chem 366: 601–608Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt 1989

Authors and Affiliations

  • B. Ribadeau-Dumas
    • 1
  1. 1.Dairy Research LaboratoryInstitut National de la Recherche AgronomiqueJouy-en-JosasFrance

Personalised recommendations