Advertisement

Die Schädigung des Knorpelgewebes durch den aktivierten Sauerstoff: ein Mechanismus der entzündlichen Gelenkdestruktion?

  • H. Burkhardt
  • M. Schwingel
  • H. Menninger
  • H. W. Macartney
  • H. Tschesche
Conference paper
Part of the Der Rheumatismus book series (2798, volume 45)

Zusammenfassung

Saueratoffradikale (Superoxidanion, Hydroxylradikal) sowie Wasserstoffperoxid (H2O2) und Singletsauerstoff werden über eine membranständige Oxidase an der Zellmembran phagozytierender Entzündungszellen generiert (9). Aufgrund ihrer hohen Reaktionsfähigkeit sind diese Derivate des aktivierten Sauerstoffs in der Lage mit einer Vielzahl biologisch wichtiger Moleküle chemische Reaktionen einzugehen. So spielen Sauerstoffradikale (OR) unter physiologischen Bedingungen eine wichtige Rolle in der Infektabwehr und eine Störung ihrer Produktion wie sie in den Leukozyten bei der chronischen Granulomatose nachgewiesen wurde, führt auf zellulärer Ebene zu einer reduzierten Bakterizide und klinisch zu schweren infektiösen Komplikationen (1, 2, 17). Auch im Entzündungsgeschehen hat der aktivierte Sauerstoff eine modulierende Wirkung, beispielsweise über seine Interaktionen mit dem Prostaglandin-System (9).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Babior BM, Kipnes R, Curnutte J (1973) Biological defence mechanisms. The production by leukocytes of Superoxide, a potential bactericidal agent. J Clin Invest 52:741–744Google Scholar
  2. 2.
    Babior BM (1978) Oxygen-dependent microbial killing by phagocytes. N Engl J Med 298:659–668, 721-725PubMedCrossRefGoogle Scholar
  3. 3.
    Barrett AJ (1978) The possible role of neutrophil proteinases in damage to articular cartilage. Agents Actions 8:11–18PubMedCrossRefGoogle Scholar
  4. 4.
    Baugh RJ, Schnebli HP (1980) Role and potential therapeutic value of proteinase inhibitors in tissue destruction. In: Sträubli P, Barrett AJ, Baici A (eds) Workshop on proteinases and tumor invasion. Raven Press, New York, pp 157–180Google Scholar
  5. 5.
    Betts WH, Cleland LG (1982) Effect of material chelators and antiinflammatory drugs on the degradation of hyaluronic acid. Arthritis Rheum 25:1469–1476PubMedCrossRefGoogle Scholar
  6. 6.
    Bitter T, Muir HM (1962) A modified uronic acid carbazole reaction. Anal Biochem 4:430–434CrossRefGoogle Scholar
  7. 7.
    Carp H, Janoff A (1979) In vitro suppression of serum elastase-inhibitory capacity by reactive oxygen species. J Clin Invest 63:793–797PubMedCrossRefGoogle Scholar
  8. 8.
    Del Maestro RF, Thaw HH, Björk J, Planker M, Arfors KE (1980) Free radicals as mediators of tissue injury. Acta Physiol Scand [Suppl] 492:43–57Google Scholar
  9. 9.
    Fantone JC, Ward PA (1982) Role of oxygen derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol 107:397–418Google Scholar
  10. 10.
    Greenwald RA, Moy WW (1976) Degradation of cartilage proteoglycans and collagen by Superoxide radical. Arthritis Rheum 19:799Google Scholar
  11. 11.
    Greenwald RA, Moy WW (1979) Inhibition of collagen gelation by action of the Superoxide radical. Arthritis Rheum 22:251–259PubMedCrossRefGoogle Scholar
  12. 12.
    Greenwald RA, Moy WW (1980) Effect of oxygen-derived free radicals on hyaluronic acid. Arthritis Rheum 23:455–463PubMedCrossRefGoogle Scholar
  13. 13.
    Harris ED, Vater CA, Mainardi CL, Werb Z (1978) Cellular control of collagen breakdown in rheumatoid arthritis. Agents Actions 8:36–42PubMedCrossRefGoogle Scholar
  14. 14.
    Heinz F, Reckel S, Kalden JR (1979) A new spectrophotometric assay for enzymes of purine metabolism I. Determination of xanthine oxidase activity. Enzyme 24:239–246Google Scholar
  15. 15.
    Huber W, Saifer MG (1977) Orgotein, the drug version of bovine Cu-Zn Superoxide dis-mutase. In: Michelson AM, McCord JM, Fridovich I (eds) A summary account of safety and pharmacology inlaboratory animals, Superoxide and Superoxide dismutases. Academic Press. New York pp 517–534Google Scholar
  16. 16.
    Hori H, Nagai Y (1979) Purification of tadpole collagenase and characterization using collagen and synthetic substrates. Biochim Biophys Acta 566:211–221PubMedGoogle Scholar
  17. 17.
    Johnsston RB, Keele BB, Miesa HP, Lehmeyer J, Webb LS, Bachner RL, Rajagopolam KV (1975) The role of Superoxide anion generation in phagocytic bactericidal activity: Studies with normal and chronic granulomatous disease leukocytes. J Clin Invest 55:1357–1372CrossRefGoogle Scholar
  18. 18.
    Kruze D, Menninger H, Fehr K, Böni A (1976) Purification and some properties of a neutral protease from human leukocytes granules and its comparison with pancreatic elastase. Biochim Biophys Acta 438:503–513PubMedGoogle Scholar
  19. 19.
    Macartney HW, Tschesche H (1980) Isolation of human polymorphonuclear leukocyte collagenase and activation to active enzyme. Hoppe Seyler’s Z Physiol Chem 361:298–299Google Scholar
  20. 20.
    Maroudas A (1975) Biophysical chemistry of cartilaginous tissue with special reference to solute and fluid transport. Biorheology 12:233–248PubMedGoogle Scholar
  21. 21.
    McCord JM, Fridovich I (1968) The reduction of cytochrome C by milk xanthine oxidase. J Biol Chem 243:5753–5760PubMedGoogle Scholar
  22. 22.
    Menninger H, Putlier R, Mohr W, Wessinghage D, Tillmann K (1980) Granulocyte elastase at the site of cartilage erosion by rheumatoid synovial tissue. Z Rheumatol 39:145–156PubMedGoogle Scholar
  23. 23.
    Menninger H, Burkhardt H, Röske W, Ehlebracht W, Hering B, Gurr E, Mohr W, Mierau HD (1981) Lysosomal elastase: Effect on mechanical and biomechanical properties of normal cartilage, inhibition by polysulfonated glycosaminoglycan, and binding to chondrocytes. Rheumatol Int 1:73–81PubMedCrossRefGoogle Scholar
  24. 24.
    Mierau HD, Hering B (1979) Die Anwendung von periodischen Kräften verschiedener Frequenzen zur Untersuchung der visokoelastischen Eigenschaften der Gingiva. Dtsch Zahnärztl Z 34:378–382PubMedGoogle Scholar
  25. 25.
    Muir H (1978) Proteoglycans of cartilage. J Clin Path 31 [Suppl 12]:67–81CrossRefGoogle Scholar
  26. 26.
    Mohr W, Menninger H (1980) Polymorphonuclear granulocytes at the pannus-cartilage junction in rheumatoid arthritis. Arthritis Rheum 23:1413–1414PubMedCrossRefGoogle Scholar
  27. 27.
    Monboisse JC, Braquet P, Randoux A, Borel JP (1983) Non-enzymatic degradation of acid soluble calf skin collagen by Superoxide ion: Protective effect of flavonoids. Biochem Pharmacol 32:53–58PubMedCrossRefGoogle Scholar
  28. 28.
    Monboisse JC, Braquet P, Borel JP (1984) Oxygen-free radicals as mediators of collagen breakage. Agents Actions 15:49–50CrossRefGoogle Scholar
  29. 29.
    Oyangui Y (1976) Participation of Superoxide anions at the prostaglandin phase of carra-geenan foot-oedema. Biochem Pharmacol 25:1465–1472CrossRefGoogle Scholar
  30. 30.
    Perez HD, Goldstein IM (1979) Generation of a chemotactic factor from arachidonic acid by exposure to a superoxide-generating system. Fed Proc 38:1170Google Scholar
  31. 31.
    Pryor WA, Stanley JP (1975) A suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymatic production of prostaglandin endoperoxides during autoxidation. J Org Chem 40:3615–3617Google Scholar
  32. 32.
    Rosenberg L (1971) Chemical basis for the histological use of safranin-O in study of articular cartilage. J Bone Joint Surg [Am] 53:69–82Google Scholar
  33. 33.
    Riittner JR, Spycher MA, Velvart M, Fehr K (1980) Morphologische Untersuchungen zur Frage der reparativen Funktion von Pannusgewebe bei der experimentellen Kaninchenarthritis. Z Rheumatol 39:205–211Google Scholar
  34. 34.
    Segal M, Fertel RH, Kraut EH, Sagone AL (1981) The role of reaktive oxygen species in thromboxane B2 generation by human polymorphonuclear leukocytes. Blood 58 [Suppl 1]:77Google Scholar
  35. 35.
    Shiozawa S, Jasin HE, Ziff M (1980) Absence of immunglobulins in rheumatoid cartilage-pannus junctions. Arthritis Rheum 23:816–821PubMedCrossRefGoogle Scholar
  36. 36.
    Simchowitz L, Metha J, Spilberg I (1979) Chemotactic factor-induced generation of superoxide radicals by human neutrophils: effect of metabolic inhibitors and antiinflammatory drugs. Arthritis Rheum 22:755–763PubMedCrossRefGoogle Scholar
  37. 37.
    Stegemann H (1958) Mikrobestimmung von Hydroxyprolin mit Chloramin-T und p-Dime-thylaminobenzaldehyd. Z Physiol Chem 311:41–45CrossRefGoogle Scholar
  38. 38.
    Tschesche H, Macartney HW (1981) A new principle of regulation of enzyme activity. Activation and regulation of human polymorphonuclear leukocyte collagenase via disulfide-thiol exchange as catalysed by the glutathione cycle in a peroxidase coupled reaction to glucose metabolism. Eur J Biochem 120:183–190Google Scholar
  39. 39.
    Urban JPG, Maroudas A, Bayliss MT, Dillon J (1979) Swelling pressures of proteoglycans at the concentrations found in cartilaginous tissues. Biorheology 16:447–467PubMedGoogle Scholar
  40. 40.
    Velvart M, Fehr K, Baici A, Sommermeyer G, Knöpfel M, Cancer M, Salgam P, Böni R (1981) Degradation in vivo of articular cartilage in rheumatoid arthritis by leukocyte elastase from polymorphonuclear leukocytes. Rheumatol Int 1:121–130PubMedCrossRefGoogle Scholar
  41. 41.
    Wooley DE, Roberts DR, Evanson JM (1976) Small molecular weight serum protein which specifically inhibits human collagenases. Nature 261:325–327CrossRefGoogle Scholar
  42. 42.
    Zuckner J, Baldassare A, Chang F, Auclair R (1977) High synovial fluid leukocyte counts of noninfectious etiology. Arthritis Rheum 20:270Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG, Darmstadt 1986

Authors and Affiliations

  • H. Burkhardt
    • 1
  • M. Schwingel
    • 1
    • 4
  • H. Menninger
    • 2
  • H. W. Macartney
    • 3
  • H. Tschesche
    • 3
  1. 1.Abteilung für Krankheiten der Bewegungsorgane und des Stoffwechsels, Zentrum Innere Medizin und DermatologieMediziniszhe Hochschule HannoverGermany
  2. 2.Rheumaklinik Bad AbbachGermany
  3. 3.Lehrstuhl für BiochemieUniversität BielefeldGermany
  4. 4.Department Innere Medizin, Abteilung für RheumatologieMediziniszhe Hochschule HannoverHannover 1Germany

Personalised recommendations