Skip to main content

Determination of left ventricular diastolic wall stress and elasticity in situ. A methodological investigation*)

  • Conference paper
Cardiac Adaptation to Hemodynamic Overload, Training and Stress

Summary

A methodological study of the requirements for reliable determination of the left ventricular end-diastolic pressure-volume relationship, wall stress and wall elasticity was performed using angiocardiographic measurement of the inner volume and wall thickness, as well as simultaneous measurement of left ventricular pressure on closed-chest dogs. The reliability of the actual roentgenological volume determination was tested by comparing x-ray and direct volume measurement of ventricular casts.

The close correlation of angiocardiographic volume determination with direct volume measurement reveals that the area-length method of Sandier and Dodge permits reliable determination of left ventricular enddiastolic volume. During diastasis, the diastolic portion of the pressure-volume loop of an individual contraction coincides substantially with the static pressure-volume relationship, at low and medium heart rates. Only the pressure and volume changes during this period, corresponding to a short portion of the pressure-volume loop, should be used for an approximate determination of static wall elasticity, particularly in the volumeloaded heart. Under the conditions of the present experiments, ca. 50 % of the shift in the left ventricular diastolic pressure-volume relationship under hypoxia can be attributed to the influence of increased right ventricular filling. In an early phase of hypoxia, a contracture-like effect can be simulated by an increase in right ventricular pressure, although actual contracture does not yet occur. As in contracture, the decrease in ventricular distensibility due to geometric conditions neither changes the slope of the relation between reciprocal compliance @@@lineEquation@@@ and ventricular pressure (P) nor the relation between tangent elastic modulus (E) and wall stress (σ).

Supported by the Deutsche Forschungsgemeinschaft

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brilla, Ch.: Wandspannung und Elastizität des linken Ventrikelmyokards unter Rechtsherzbelastung und Hypoxie im akuten Versuch. Thesis, University of Tübingen, 1983.

    Google Scholar 

  2. Diamond, G., J. S. Forrester: Effect of coronary artery disease and acute myocardial infarction on left ventricular compliance in man. Circulation 45, 11–19 (1972).

    PubMed  CAS  Google Scholar 

  3. Glantz, S. A., W. W. Parmley: Factors which affect the diastolic pressure-volume curve. Circulat. Res. 42, 171–180 (1978).

    PubMed  CAS  Google Scholar 

  4. Hepp, A., D. Gradistanac, G. Kissling, R. Jacob: Influence of catheter position on blood pressure values in the pulmonary artery of the dog. Basic Res. Cardiol. 68, 470–479 (1973).

    Article  PubMed  CAS  Google Scholar 

  5. Holubarsch, Ch., R. Jacob: Diastolic tension of rat cardiac muscle during deficiency of oxygen and glucose. Stress-strain relationships and reversibility. Basic Res. Cardiol. 76, 690–703 (1981).

    Article  PubMed  CAS  Google Scholar 

  6. Holubarsch, Ch., R. Jacob: Die „Compliance” des Herzens. Med. Welt 31, 136–144 (1980).

    PubMed  Google Scholar 

  7. Jacob, R.: Anpassung des Herzens an veränderte Anforderungen. Pacemaker Digest 13, 83–116 (1977).

    Google Scholar 

  8. Jacob, R., Ch. Holubarsch, H. Moser, B. Brenner: Quantification of changes in myocardial elasticity under hypoxia. In: Heiss, H. W. (Ed.), Advances of Clinical Cardiology 1, 211–228. G. Witzstrock (New York 1980).

    Google Scholar 

  9. Jacob, R., G. Kissling: Dynamik des intakten Herzens. In: Handbuch der Inneren Medizin, VEB G. Fischer, Berlin (in press

    Google Scholar 

  10. Janicki, J. S., K. T. Weber: Factors influencing the diastolic pressure-volume relation of the cardiac ventricles. Fed. Proc. 39, 133–140 (1980).

    PubMed  CAS  Google Scholar 

  11. Lange, P. E., D. Onnasch, F. L. Farr, P. H. Heintzen: Angiocardiographic left ventricular volume determination. Accuracy, as determined from human casts, and clinical application. Europ. J. Cardiol. 8, 449–476 (1978).

    CAS  Google Scholar 

  12. Mirsky, I., W. W. Parmley: Evaluation of passive elastic stiffness for left ventricle and isolated heart muscle. In: Mirsky, L, Ghista, D. N., Sandler, H., Cardiac Mechanics. John Wiley & Sons Inc. New York, London, Sydney, Toronto, 331–358 (1974).

    Google Scholar 

  13. Mirsky, I.: Elastic properties of the myocardium: A quantitative approach with physiological and clinical applications. Handbook of Physiology, Sect. 2, The Cardiovascular System, Berne, R. M., Washington, D.C., 497–531 (1979).

    Google Scholar 

  14. Moser, H., R. Jacob: Diastolic tension during the initial phase of hypoxia in isolated cardiac muscle preparations and in the left ventricular wall of rats. Pflügers Arch. 368, Suppl. Rl (1977).

    Google Scholar 

  15. Rackley, Ch. E., H. T. Dodge, Y. D. Coble, R. E. Hay: A method for determining left ventricular mass in man. Circulation 29, 666–671 (1964).

    PubMed  CAS  Google Scholar 

  16. Ross, J.Jr.: Acute displacement of the diastolic pressure-volume curve of the left ventricle: Role of the pericardium and the right ventricle. Circulation 59, 32–37 (1979).

    PubMed  Google Scholar 

  17. Sandier, H., H. T. Dodge: The use of single plane angiocardiograms for the calculation of left ventricular volume in man. Amer. Heart J. 75, 325–334 (1968).

    Article  Google Scholar 

  18. Streeter, D. D., Jr., H. M. Spotnitz, D. P. Patel, J. Ross, Jr., E. H. Sonnenblick: Fiber orientation in the canine left ventricle during diastole and systole. Circulat. Res. 24, 339–347 (1969).

    PubMed  Google Scholar 

  19. Ullrich, K. J., G. Riecker, K. Kramer: Das Druckvolumendiagramm des Warmblüterherzens. Pflügers Arch. 259, 481–498 (1954).

    Article  PubMed  CAS  Google Scholar 

  20. Yin, F. C. P.: Ventricular wall stress. Circulat. Res. 49, 829–842 (1981).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Brilla, C., Jacob, R., Kissling, G. (1983). Determination of left ventricular diastolic wall stress and elasticity in situ. A methodological investigation*). In: Jacob, R., Gülch, R.W., Kissling, G. (eds) Cardiac Adaptation to Hemodynamic Overload, Training and Stress. Steinkopff. https://doi.org/10.1007/978-3-642-85326-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85326-5_47

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-85328-9

  • Online ISBN: 978-3-642-85326-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics