Advertisement

The phosphorylation of cardiac contractile proteins

  • P. J. England
  • D. Mills
  • S. A. Jeacocke
  • H. T. Pask
Conference paper

Summary

Two contractile proteins, troponin-I and C-protein, are rapidly phosphorylated in perfused heart in response to stimulation by catecholamines. Both are phosphorylated only in response to increases in intracellular cyclic AMP, and are good substrates for cyclic AMP-dependent protein kinase in vitro. The phosphorylation of troponin-I decreases the affinity of the troponin complex for Ca2+ by increasing the off-rate for Ca2+ dissociation. This is probably part of the mechanism whereby catecholamines increase the rate of relaxation in heart. C-protein is phosphorylated in vivo and in vitro on 4–5 sites, but the function of both C-protein and its phosphorylation are unknown. Myosin P-light chain (phosphorylated by a Ca2+-dependent kinase) is approximately 50 % phosphorylated in control perfusions, and this is unchanged during acute inotropic interventions. However, perfusions with 32Pi indicate an active kinase/phosphatase couple, which may be fully active under control conditions.

Key words

protein phosphorylation troponin-I C-protein myosin light chain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reddy, Y. S., D. Ballard, N. Y. Giri, A. Schwartz: Phosphorylation of cardiac native tropomyosin and troponin: inhibitory effect of actomyosin and the possible presence of endogenous myofibrillar-located cyclic AMP-dependent protein kinase. J. Mol. Cell. Cardiol. 5, 461–71 (1973).PubMedCrossRefGoogle Scholar
  2. 2.
    Ray, K. P., P. J. England: Phosphorylation of the inhibitory subunit of troponin and its effect on the calcium dependence of myofibril adenosine triphosphatase. FEBS Lett. 70, 11–16 (1976).PubMedCrossRefGoogle Scholar
  3. 3.
    Moir, A. J. G., R. J. Solaro, S. V. Perry: The site of phosphorylation of troponin-I in the perfused rat heart. Biochem. J. 185, 505–13 (1980).PubMedGoogle Scholar
  4. 4.
    England, P. J.: Correlation between contraction and phosphorylation of the inhibitory subunit of troponin in perfused rat heart. FEBS Lett. 50,57–60 (1975).PubMedCrossRefGoogle Scholar
  5. 5.
    England, P. J.: Phosphorylation of the inhibitory subunit of troponin in perfused hearts of mice deficient in phosphorylase kinase. Biochem. J. 168, 307–10 (1977).PubMedGoogle Scholar
  6. 6.
    Solaro, R. J., A. J. G. Moir, S. V. Perry: Phosphorylation of troponin-I and the inotropic affect of adrenaline in perfused rabbit heart. Nature 262, 615–616 (1976).PubMedCrossRefGoogle Scholar
  7. 7.
    Stull, J. T.: Phosphorylation of contractile proteins in relation to muscle function. Adv. Cyclic. Nucleotide Res. 13, 39–93 (1980).PubMedGoogle Scholar
  8. 8.
    Ezrailson, E. G., J. D. Potter, L. Michael, A. Schwartz: Positive inotropy induced by ouabain, by increased frequency, by X573A (R02-2985), by calcium and by isoproterenol: The lack of correlation with phosphorylation of Tn-I. J. Mol. Cell. Cardiol. 9, 693–698 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    England, P. J.: Studies on the phosphorylation of the inhibitory subunit of troponin during modification of contraction in perfused rat heart. Biochem. J. 160, 295–304 (1976).PubMedGoogle Scholar
  10. 10.
    Stull, J. T., C. F. Sanford, D. R., Manning, D. K. Blumenthal, C. W. High: Phosphorylation of myofibrillar proteins in striated muscle. Cold. Spring Harbor Conf. Prolif. 8, 823–840 (1981).Google Scholar
  11. 11.
    England, P. J.: Cardiac function and contractile protein phosphorylation. Proc. Royal Soc. Lond., Ser. B, in press (1983).Google Scholar
  12. 12.
    Robertson, S. P., J. D. Johnson, M. J. Holroyde, E. G. Kranais, J. D. Potter, R. J. Solaro: The effect of troponin-I phosphorylation on the Ca2+ binding properties of Ca2−-regulatory site of bovine cardiac troponin (1982).Google Scholar
  13. 13.
    Herzig, J. W., G. Kohler, G. Pfizer, J. C. Ruegg, G. Woffle: Cyclic AMP inhibits contractility of detergent treated, glycerol extracted cardiac muscle. Pflügers Arch. 391, 208–212 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    Craig, R., G. Offer: The localisation of C-protein in rabbit skeletal muscle. Proc. Roy. Soc. Lond. Ser. B. 192, 451–461 (1976).CrossRefGoogle Scholar
  15. 15.
    Yamamoto, K., C. Moos: A comparative study of C-proteins from heart and skeletal muscle. Biophys. J. 33, 237a (1981).Google Scholar
  16. 16.
    Moos, C., G. Offer, R. Starr, P. Bennett: Interaction of C-protein with myosin, myosin rod and light meromyomyosin. J. Mol. Biol. 97, 1–9 (1975).PubMedCrossRefGoogle Scholar
  17. 17.
    Starr, R., G. Offer: The interaction of C-protein with heavy meromyosin and subfragment-2. Biochem. J. 171, 813–816 (1978).PubMedGoogle Scholar
  18. 18.
    Jeacocke, S. A., P. J. England: Phosphorylation of a myofibrillar protein of Mr 150,000 in perfused rat heart, and the tentative identification of this as C-protein. FEBS Lett., 122, 129–132 (1980PubMedCrossRefGoogle Scholar
  19. 19.
    Hartzeil, H. C., L. Titus: Effects of cholinergic and adrenergic agonists on phosphorylation of a 165,000-dalton myofibrillar protein in intact cardiac muscle. J. Biol. Chem. 257, 2111–2120 (1982).Google Scholar
  20. 20.
    Pires, E., S. V. Perry, M. A. W. Thomas: Myosin light chain kinase a new enzyme from striated muscle. FEBS Lett. 41, 292–296 (1974).PubMedCrossRefGoogle Scholar
  21. 21.
    Frearson, N., S. V. Perry: Phosphorylation of the light chain components of myosin from cardiac and red skeletal muscles. Biochem. J. 151, 99–107 (1975).PubMedGoogle Scholar
  22. 22.
    Crow, M., M. J. Kushmerick: Light chain phosphorylation and muscle energetics. Biophys. J. 33, 236a (1981).Google Scholar
  23. 23.
    Cooke, R., K. Franks, J. T. Stull: Myosin phosphorylation regulates the ATPase activity of permeable skeletal muscle fibres. FEBS Lett. 144, 33–37 (1982).PubMedCrossRefGoogle Scholar
  24. 24.
    Ruegg, J. C., G. Pfitzer, F. Hofmann: Contractility of skinned cardiac fibres: Modification by phosphorylation on contractile proteins. Basic Res. Cardiol. in press (1983).Google Scholar
  25. 25.
    Holroyde, M. J., D. A. P. Small, E. Howe, R. J. Solaro: Isolation of cardiac myofribils and myosin light chains with in vivo levels of light chain phosphorylation. Biochem. Biophys. Acta 587, 628–637 (1979).PubMedCrossRefGoogle Scholar
  26. 26.
    Perry, S. V., H. A. Cole, N. Frearson, A. J. G. Moir, A. C. Nairn, R. J. Solaro: Phosphorylation of the myofibrillar proteins. Proc. 12th FEBS Meeting 54, 147–159 (1979).Google Scholar
  27. 27.
    Jeacocke, S. A., P. J. England: Phosphorylation of myosin light chains in perfused rat heart. Biochem. J. 188, 763–768 (1980).PubMedGoogle Scholar
  28. 28.
    High, C. W., J. T. Stull: Phosphorylation of myosin in perfused rabbit and rat hearts. Amer. J. Physiol. 239, H756–H764 (1980).PubMedGoogle Scholar
  29. 29.
    Litten, R. Z., B. J. Martin, E. R. Howe, N. R. Alpert, R. J. Solaro: Phosphorylation and adenosine triphosphatase activity of myofribrils from thyrotoxic rabbit hearts. Circulat. Res. 48, 498–501 (1981).PubMedGoogle Scholar
  30. 30.
    Hofmann, F., H. Wolf: Basic properties of myosin light chain kinase from bovine cardiac muscle. Cold Spring Harbor Conf. Prolif. 8, 841–848 (1981).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG, Darmstadt 1983

Authors and Affiliations

  • P. J. England
    • 1
  • D. Mills
    • 1
  • S. A. Jeacocke
    • 1
  • H. T. Pask
    • 1
  1. 1.Department of BiochemistryUniversity of Bristol, Medical School, University WalkBristolUK

Personalised recommendations