Advertisement

Biochemische Grundlagen der Wirkung von Digitalisglykosiden

  • E. Erdmann
Conference paper
Part of the Tagung der Deutschen Gesellschaft für Herz- und Kreislaufforschung book series (2849, volume 48)

Zusammenfassung

In seinem berühmt gewordenen Buch: „An Account of the Foxglove and Some of its Medical Uses“ schrieb William Withering 1785 in den Schlußfolgerungen: „It (Digitalis) has a power over the motion of the heart to a degree yet unobserved in any other medicine, and this power may be converted to salutary ends.“ Im wesentlichen aber verordnete er seine Fingerhutextrakte gegen die Wassersucht, ohne daß ihm der primär kardiale Angriffspunkt der Herzglykoside und damit die eigentliche Therapie der hydropischen Herzinsuffizienz bewußt waren.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adams, R., Schwartz, A., Grupp, G., Grupp, J., Lee, S., Wollick, E., Powell, T., Twist, V., and Gathiram Y.: High affinity ouabain binding site and low dose positive inotropic effect in rat myocardium. Nature 296: 167–169 (1982).PubMedCrossRefGoogle Scholar
  2. Akera, T. and Brody, T.Mt: The Role of Na+, K+ ATPase in the Inotropic Action of Digitalis. Pharmacol. Rev. 29: 187–220 (1978).Google Scholar
  3. Allen, D.G., Blinks, J.R.: Calcium transients in aequorin-injected frog cardiac muscle. Nature 273: 509–513 (1978).PubMedCrossRefGoogle Scholar
  4. Bonke, F.: Pathomechanismen kardialer Arrhythmien. In: Ventrikiläre Herzrhythmusstörungen, edit.: B. Lüderitz, pp. 28–37. Berlin, Heidelberg, New York, Springer 1981.Google Scholar
  5. Cohen, I., Daut, J., Noble, D.: The influence of extracellular potassim ions on the action of ouabain on membrane currents in sheep purkinje fibers. J. Physiol. 251: 42–43 (1976).Google Scholar
  6. Detweiler, D.K.: Comparative pharmacology of cardiac glycosides. Fed. Proc. 26: 1119–1124 (1976).Google Scholar
  7. Dransfeld, H., Greeff, K., Berger, H. und Cautius, V.: Die verschiedene Empfindlichkeit der Na+ + Reaktivierten ATPase des Herz-und Skeletmuskels gegen k-Strophanthin. Naunyn-Schmiedeberg’s Arch. Pharmak. u. exp. Path. 254: 225–234 (1966).CrossRefGoogle Scholar
  8. Erdmann, E.: Quantitative Aspekte der spezifischen Bindung von Herzglykosiden an Membranrezeptoren. Habilitationsschrift (1978).Google Scholar
  9. Erdmann, E.: Influence of Cardiac Glycosides on their Receptor. In: Handb. of Exp. Pharmacol. Vol. 56/1. edit. K. Greeff, pp. 337–380. Berlin, Heidelberg: Springer 1981.Google Scholar
  10. Erdmann, E., and Boite, H.-D.: Über den Mechanismus der Herzglykosidwirkung unter besonderer Berücksichtigung des Digitoxins. In: Digitalistherapie bei Herzinsuffizienz, edit.: K. Kochsiek, N. Rietbrock, S. 66–70. München, Wien, Baltimore: Urban und Schwarzenberg 1981.Google Scholar
  11. Erdmann, E., Presek, P. und Swozil, R.: Über den Einfluß von Kalium auf die Bindung von Strophanthin an menschliche Herzmuskelzellmembranen. Klin. Wschr. 54: 383–387 (1976).PubMedCrossRefGoogle Scholar
  12. Erdmann, E., Krawietz, W. and Koch, M.: Cardiac Glycoside Receptors in Disease: The Number of Ouabain Binding Sites in Human Erythrocytes is Subject to Regulation. In: Na, K-ATPase, Structure and Kinetics, edit.: J.C. Skou and J.G. Norby, pp. 517–524. London: Academic Press 1979.Google Scholar
  13. Erdmann, E., Philipp, G. and Scholz, H.: Cardiac Glycoside Receptor, (Na+ + K+)ATPase Activity and Force of Contraction in Rat Heart. Biochem. Pharmacol. 29: 3219–3229 (1980).PubMedCrossRefGoogle Scholar
  14. Erdmann, E., Philipp, G. and Scholz, H.: Evidence for two receptors for cardiac glycosides in the heart. In: Cell Membrane in Function and Dysfunction of VscularTissue. edit.: T. Godfraind and P. Meyer, pp. 77–83. Amsterdam, New York, Oxford: Elsevier North-Holland 1981.Google Scholar
  15. Fabiato, A. und Fabiato, F.: Activation of skinned cardiac cells. Subcellular effects of cardioactive drugs] Eur. J. Cardiol. 1: 145–155 (1973).Google Scholar
  16. Frank, G.B.: The Current View of the Source of Trigger Calcium in Excitation-Contraction Coupling in Vertebrate Skeletal Muscle. Biochem. Pharmacol. 29: 2399–2406 (1980).PubMedCrossRefGoogle Scholar
  17. Glitsch, H.G., Reuter, H. and Scholz, H.: The Effect of the Internal Sodium Concentration on Calcium Fluxes in Isolated Guinea-Pig Auricles. J. Physiol. 209: 25–43 (1970).PubMedGoogle Scholar
  18. Godfraind, T.: Cardiac Glycoside Receptors in the Heart. Biochem. Pharmacol. 24: 823–827 (1975).PubMedCrossRefGoogle Scholar
  19. Godfraind, T. and Ghysel-Burton, J.: Binding Sites related to ouabain-induced stimulation or inhibition of the sodium pump. Nature 265: 165–166 (1977).Google Scholar
  20. Goshima, K. and Wakabayashi, S.: Involvement of an Na+-Ca++-Exchange System in Genesis of Quabain Induced Arrhythmias of Cultured Myocardial Cells. J. Molec. Cell. Cardiol. 13: 489–509 (1981).CrossRefGoogle Scholar
  21. Kim, Y.I., Noble, R.J., Zipes, D.P.: Dissociation of the Inotropic Effect of Digitalis from its Effect on Atrioventricular Conduction. Am. J. Cardiol. 36: 459–467 (1975).PubMedCrossRefGoogle Scholar
  22. Langer, G.: The Role of Calcium in the Control of Myocardial Contractility. J. Molec. Cell. Cardiol. 12: 231–239 (1980).CrossRefGoogle Scholar
  23. Langer, G.A.: Mechanism of Action of the Cardiac Glycosides on the Heart. Biochem. PharmacoL 30: 3261–3264 (1981).PubMedCrossRefGoogle Scholar
  24. Langer, G.A. and Serena, S.D.: Effects of Strophanthidin upon Contraction and Ionic Exchange in Rabbit Ventricular Myocardium: Relation to Control of Active State. J. Molec. Cell. Cardiol. 1: 65–90 (1970).CrossRefGoogle Scholar
  25. Lee, Ch. O., Kang, D.H., Sokol, J.H., and Lee, D.S.: Relation Between Intracellular Na Ion Activity and Tension of Sheep Cardiac Purkinje Fibers Exposed to Dihydro-Ouabain. Biophys. J. 29: 315–330 (1980).PubMedCrossRefGoogle Scholar
  26. Lüllmann, H. and Peters, T.: Influence of Cardiac Glycosides on Cell Membranes. In: Handb. of Exp. Pharmacol. Vol. 56/1. edit.: K. Greeff, pp. 395–404, Berlin, Heidelberg, New York: Springer-Verlag: 1981.Google Scholar
  27. Matsui, H. and Schwartz, A.: Mechanism of Cardiac Glycoside Inhibition of the (Na+ + K+)-Dependent ATPase from Gardiac Tissue. Biochim. Biophys. Acta 151: 655–663 (1968).PubMedGoogle Scholar
  28. McCubbin, W.D. and Kay, CM.: Calcium Incuced Conformational Changes in the Troponin-Tropomyosin Complexes of Skeletal and Cardiac Muscle and Their Roles in the Regulation of ContractionRelaxation. Acc. Chem. Res. 13: 185–192 (1980).CrossRefGoogle Scholar
  29. Michael, L.H., Schwartz, A. and Wallick, E.T.: Nature of the Transport Adenosine Triphosphatase-Digitalis Complex: XIV. Inotropy and Cardiac Glycoside Interaction with Na+, K+-ATPase of Isolated Cat Papillary Muscles. Molec. Pharmacol. 16: 135–146 (1979).Google Scholar
  30. Noble, D.: Mechanism of action of therapeutic levels of cardiac glycosides. Cardiovasc. Res. 14: 495–514 (1980).PubMedCrossRefGoogle Scholar
  31. Peters, T., Raben, R.-H. and Wassermann, O.: Evidence for a Dissociation Between Positive Inotropic Effect and Inhibition of the Na+-K+-ATPase by Ouabain, Cassaine and their Alkylating Derivates. Eur. J. Pharmacol. 26: 166–174 (1974).PubMedCrossRefGoogle Scholar
  32. Repke, K. und Portius, HJ.: Über die Identität der Ionenpumpen-ATPase in der Zellmembran des Herzmuskels mit einem Digitalis-Rezeptorenzym. Experientia 19: 1–7 (1963).CrossRefGoogle Scholar
  33. Repke, K., und Portius, HJ.: Über die Ursache der Speciesunterschiede in der Digitalisempfindlichkeit. Chem. Pharmacol. 14: 1785–1802 (1965).CrossRefGoogle Scholar
  34. Reuter, H.: Exchange of Calcium Ions in the Mammalian Myocardium. Circ. Res. 34: 599–605 (1974).PubMedGoogle Scholar
  35. Schatzmann, H.J.: Herzglykoside als Hemmstoffe für den aktiven Kalium und Natriumtransport durch die Erythrocytenmembran. Helv. Physiol. Acta 11: 346–354 (1953).Google Scholar
  36. Schwartz, A.: Sodium-Potassium Adenosine Triphosphatase — A Receptor for Digitalis? Biochem. Pharmacol. 25: 237–239 (1976).Google Scholar
  37. Singer, S. and Conrad, M.: The structure of cell membranes. In: Cell Membrane Function and Dysfunction of Vascular Tissue, edit.: T. Godfraind and P. Meyer, pp. 1–12, Elsevier, North-Holland 1981.Google Scholar
  38. Skou, J.C.: The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23: 349–401 (1957).CrossRefGoogle Scholar
  39. Werdan, K., Wagenknecht, B., Zwissler, B., Krawietz, W., Erdmann, E.: Gleichzeitige Messung der spezifischen Strophanthinbindung und des aktiven Kationentransportes in kultivierten Herzmuskelzellen von Ratte und Hühnchen. Verh. dtsch. Ges. Kreislaufforsch. 1982 im Druck.Google Scholar
  40. Withering, W.: An account of the foxglove, and some of its medical uses: With practical remarks on dropsy, and other diseases. Birmingham 1785.Google Scholar
  41. Yamamoto, S., Akera, T. and Brody, T.M.: Sodium Influx Rate and Ouabain-Sensitive Rubidium Uptake in Isolated Guinea Pig Heart Atria. Biochim. Biophys. Acta 555: 270–284 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt 1982

Authors and Affiliations

  • E. Erdmann
    • 1
  1. 1.Medizinische Klinik IUniversität München Klinikum GroßhadernMünchen 70Deutschland

Personalised recommendations