Formation, Nature, and Mobility of Ions of Atmospheric Importance

  • V. A. Mohnen


An understanding of the evolution of atmospheric small ions requires the knowledge of 1) the type of radiation, 2) the atmospheric trace gas composition as a function of altitude and the physical and chemical molecular parameters of these trace gas molecules such as ionization potential, electron affinity, proton affinity, polarizability, chemical reactivity, etc., 3) ion-molecule reaction rates for eventually every collisional interaction of ions with the neutral gaseous environment and 4) the theory of ionic mobility. Partial information on 1) –4) is available today and presented in this paper. Based upon laboratory and field measurement, we can now derive a preliminary picture of the nature of atmospheric ions as a function of altitude. The atmospheric ions are thought of being in a state of constant change, reflecting in their chemical nature the collisional interaction with atmospheric trace gas molecules. Molecular rearrangement of attached molecules can lead to the formation of new chemical species on the “surface” of small ions, which allows the ion to grow into larger ion clusters. The mobility spectrum of atmospheric small ions is thought to be pseudo-continuous in the lower part of the atmosphere due to the presence of numerous trace gases (on the level of less than 10–9 of all parts) interacting with the ions during their lifetime. However, direct mass spectrometric in situ measurements of tropospheric and stratospheric ions are still missing.


Mobility Spectrum Average Mobility Measure Rate Constant Mobility Peak Single Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferguson, E. E., Ion Chemistry of the Normal Earth Stratosphere. In: Climatic Impact Assessment Program, Monograph No. 1, 1975, U.S. Department of Transportation (Washington DC, USA 1975).Google Scholar
  2. 2.
    Ion Reaction Rate Tables, in: Appendix A. Climatic Impact Assessment Program, Monograph No. 1, U.S. Department of Transportation (Washington DC, USA 1975).Google Scholar
  3. 3.
    Good, Durden and Kebarle, J. Chem. Phys. 52, 222 (1970); J. Chem. Phys. 52, 212 (1970).CrossRefGoogle Scholar
  4. 4.
    Niles, F. E., J. M. Heimerl, G. E. Keller, and L. J. Puckett, Reactions Involving Cluster Ions, CCSPAR Symposium on D- and E-Region Ion Chemistry, Aeronomy Report No. 48 (University of Illinois, 1972).Google Scholar
  5. 5.
    Narcisi, R. S., Ann. Geophys. 22, 224 (1966).Google Scholar
  6. 6.
    Goldberg, R. A. and L. J. Blumie, J. Geophys. Res. 75, 133 (1970).CrossRefGoogle Scholar
  7. 7.
    Krankowski, F. Arnold, H. Wieder, J. Kissel, and J. Zahringer, COSPAR Symposium on D- and E-Region Ion Chemistry, Aeronomy Report No. 48 (University of Illinois, 1972).Google Scholar
  8. 8.
    Kebarle, P., M. French, J. D. Payzant, “Reaction Mechanisms and Bonding Energies for Ion-Hydrate (Ion Water Clusters) of Ionospheric Interest, COSPAR Symposium, Aeronomy Report No. 48 (1972).Google Scholar
  9. 9.
    Mohnen, V. A., Pageoph 100, 123–132 (1972/VIII).Google Scholar
  10. 10.
    COSPAR Symposium on D- and E-Region Ion Chemistry, Aeronomy Report No. 48, C. F. Sechrist, Jr., and M. A. Geller, eds., (University of Illinois, 1972).Google Scholar
  11. 11.
    Payzant, J. D., A. J. Cunningham, and P. Kebarle, Gas Phase Solvation of the Ammonium Ion by NH3 and H20 and Stabilities of Mixed Clusters NH4 + (NH3)n(H2O)w, Canad. J. Chem. 51, No. 19 (1973).CrossRefGoogle Scholar
  12. 12.
    Huertas, M. L., PhD Thesis, University Paul Sabatier de Toulouse, order No. 493 (1972).Google Scholar
  13. 13.
    Fehsenfeld, F. C. and E. E. Ferguson, Laboratory Studies of Negative Ion Reactions with Atmospheric Trace Constituents. Preprint from the Aeronomy Laboratory, NOAA, Boulder Colo. (1974).Google Scholar
  14. 14.
    Widdel, H. U., G. Rose, and R. Borchers, Pageoph 84, 154 (1971).Google Scholar
  15. 15.
    Young, C. E., D. Edelson, and W. E. Falconner, J. Chem. Phys. 53, 4295 (1979).CrossRefGoogle Scholar
  16. 16.
    Bricard, J., M. Cabane, G. Madelaine, and D. Vigla, Aerosols and Atmospheric Chemistry, G. M. Hidy, Editor (New York 1972).Google Scholar
  17. 17.
    Vohra, K. G., M. C. Subbaramu, and K. N. Vasudevam, Reports, Bhabba Atomic Research Center (Bombay 1969).Google Scholar
  18. 18.
    Mohnen, V. A., Ion Molecule Reactions of Atmospheric Importance, report to NSF, ASRC publication No. 204 (1972).Google Scholar
  19. 19.
    Kassner, J., A short Report on Mobility Experiments. Preprint from the Graduate Center for Cloud Physics Research University of Missouri, Rolla (1974).Google Scholar
  20. 20.
    Tang, I. N. and A. W. Castleman, Jr., J. Chem. Phys. 60, 398 (1974).CrossRefGoogle Scholar
  21. 21.
    Hoppel, W. A., Pageoph 81, 230 (1970/IV).Google Scholar
  22. 22.
    Sherman, K. L, Terr. Magn. Atmos. Electr. 42, 371 (1937).CrossRefGoogle Scholar
  23. 23.
    Mitra, A. P., and J. N. Rowe, Aeronomy Report Edited by C. Sechrist and M. Geller, 48, 281 (1972).Google Scholar
  24. 24.
    Mohnen, V. A., Pageoph 84, 230 (1971/1).Google Scholar
  25. 25.
    Bourdeau, R. E., A. C. Aitken, and L. J. Donley, J. Geophys. Res. 71, 727 (1966).Google Scholar
  26. 26.
    Kadlecek, J. and V. A. Mohnen, Ion-Molecule Reactions of Atmospheric Importance. Interim Report, Publ. No. 263 of Atmospheric Science Research Center, State University of New York at Albany (1974).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG., Darmstadt 1976

Authors and Affiliations

  • V. A. Mohnen
    • 1
  1. 1.Atmospheric Sciences Research CenterState University of New York at AlbanyAlbany New YorkUSA

Personalised recommendations