Social Dilemmas in Lineland and Flatland

  • Rainer Hegselmann

Abstract

Understanding social processes in which numerous agents are involved in iterated interactions is a difficult task. In the following I want to demonstrate that models based on rigorous simplifications are a promising approach for understanding complex social dynamics. The simplifications will go as far as to assume that individuals are living on a line interacting with neighbors to the left and to the right (Lineland). Another rigorous simplification will be that individuals are living on a checkerboard, interacting with their neighbors in the north, south, east and west (Flatland).

Keywords

Migration Hexagonal Peri Bors Wolfram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books.Google Scholar
  2. Bruch, E. (1993). The evolution of cooperation in neighbourhood structures. Bonn University: manuscript.Google Scholar
  3. Burks, A.W. (1970). Essays on cellular automata. Urbana (Il.): University of Illinois Press.Google Scholar
  4. Casti, J.L. (1992). Reality rules — Picturing the world in mathematics (Vol.1: The fundamentals; Vol.11: The frontier). New York: Wiley & Sons.Google Scholar
  5. Demongeot, J., Goles, E. & Tchuente, M. (Eds.) (1985). Dynamical systems and cellular automata. London: Academic Press.Google Scholar
  6. Friedman, J.W. (1986). Game theory with applications to economics (2nd ed. 1991). Oxford: Oxford UP.Google Scholar
  7. Gutowitz, H. (Ed.) (1991). Cellular automata — theory and experiment. Cambridge (MA): MIT Press.Google Scholar
  8. Hartmann, St. (1996). The world as a process — Simulations in the natural and social sciences. In KHegselmann, U. Mueller & K.G. Troitzsch (Eds.) Modeling and simulation in the social sciences from a philosophy of science point of view [Theory and Decision Library]. Dordrecht: Kluver (in press).Google Scholar
  9. Hegselmann, R. (1994). Zur Selbstorganisation von Solidarnetzwerken unter Ungleichen — Ein Simulationsmodell. In K. Homann (Hg.) Wirtschaftsethische Perspektiven I — Theorie, Ordnungsfragen, Internationale Institutionen. Berlin: Duncker & Humblot.Google Scholar
  10. Hegselmann, R. (1994a). Solidarität in einer egoistischen Welt — Eine Simulation. In J. Nida-Rümelin (Hg) Praktische Rationalität — Grundlagen und ethische Anwendungen des rational choice-Paradigmas. Berlin: de Gruyter.Google Scholar
  11. Hegselmann, R. (1996). Cellular automata in the social sciences — Perspectivs, restrictions and artefacts. In R. Hegselmann, U. Mueller & K.G. Troitzsch (Eds.) Modeling and simulation in the social sciences from a philosophy of science point of view [Theory and Decision Library]. Dordrecht: Kluver (in press).Google Scholar
  12. Kirchkamp, O. (1994). Spatial evolution of automata in the prisoners’ dilemma. Bonn university: manuscript.Google Scholar
  13. Kliemt, H. (1996), Simulation and rational practice. In R. Hegselmann, U. Mueller & K.G. Troitzsch (Eds.) Modeling and simulation in the social sciences from a philosophy of science point of view [Theory and Decision Library]. Dordrecht: Kluver (in press).Google Scholar
  14. Messick, D.M. & Liebrand, W.B.G. (1995). Individual heuristics and the dynamics of cooperation in large groups. Psychological Review, 102, 131–145.CrossRefGoogle Scholar
  15. Lehman, R.S. (1977). Computer simulation and modeling — An introduction. Hillsdale: Lawrence Erlbaum Associations.Google Scholar
  16. Liebrand, W., Messick, D. & Wilke, H. (Eds.) (1992). Social dilemmas — Theoretical issues and resarch findings. Oxford: Pergamon.Google Scholar
  17. Neumann, J. v. (1966). Theory of self-reproducing automata (edited and completed by Arthur W.Burks). Urbana: University of Illinois Press.Google Scholar
  18. Nowak, A., Szamrej, J. & Latane, B. (1990). From private attitude to public opinion — Dynamic theory of social impact. Psychological Review, 97, 362–376.CrossRefGoogle Scholar
  19. Nowak, M.A. & R.M. May (1992). Evolutionary games and spatial chaos. Nature, 359, 826–829.CrossRefGoogle Scholar
  20. Nowak, M.A. & R.M. May (1993). The spatial dilemmas of evolution. International Journal of Bifurcation and Chaos, 3, 35–78.CrossRefGoogle Scholar
  21. Sakoda, J.M. (1949). Minidoka — An analysis of changing patterns of social interaction. Berkeley: University of California, doctoral dissertation.Google Scholar
  22. Sakoda, J.M. (1971). The checkerboard model of social interaction. Journal of Mathematical Sociology, 1, 119–132.CrossRefGoogle Scholar
  23. Schelling, Th. (1969). Models of segregation. American Economic Review, 59, 488–493.Google Scholar
  24. Schelling, Th. (1971). Dynamic models of segregation. Journal of Mathematical sociology, 1, 143–186.CrossRefGoogle Scholar
  25. Schulz, U., Albers, W. & Mueller, U. (Eds.) (1994). Social dilemmas and cooperation. Berlin: Springer.Google Scholar
  26. Taylor, M. (1987). The possibility of cooperation (revised edition of: Anarchy and cooperation, 1976). London: Wiley & Sons.Google Scholar
  27. Toffoli, T. & Margolus, N. (1987). Cellular automata machines — A new enviromentfor modeling. Cambridge (MA): MIT Press.Google Scholar
  28. Troitzsch, K.G. (1996). Multilevel modeling in the social sciences — Mathematical analysis and computer simulation. In W.B.G. Liebrand, R. Hegselmann & A. Nowak (Eds.) Computer modeling and the study of dynamic social processes. Thousand Oaks: Sage (in press).Google Scholar
  29. Wolfram, St. (1984). Universality and complexity in cellular automata. Physica D, 10, 1–35.CrossRefGoogle Scholar
  30. Wolfram, St. (Ed.) (1986), Theory and applications of cellular automata. Singapore: World Scientific.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Rainer Hegselmann
    • 1
  1. 1.Institut für PhilosophieUniversität BayreuthBayreuthGermany

Personalised recommendations