Advertisement

Dynamic Traffic Prediction for Motorway Networks

  • M. Ben-Akiva
  • E. Cascetta
  • H. Gunn
  • D. Inaudi
  • J. Whittaker
Part of the Transportation Analysis book series (TRANSANALY)

Abstract

A dynamic prediction system for an inter-urban motorway network which forecasts traffic conditions on the network in real time, and provides information to a motorway traffic control centre is described.

Keywords

State Space Model Traffic Assignment Link Performance Dynamic Traffic Influence Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ashok, K., Ben-Akiva, M. (1993), “Dynamic origin-destination matrix estimation for real-time traffic management systems”Proceedings of the ISTTT Univ. of California, Berkeley, pp. 465–484.Google Scholar
  2. [2]
    Ben-Akiva, M., Bergman, M., Daly, A., Ramaswamy, R. (1984), “Modelling inter-urban route choice behaviour”,Proceedings Ninth International Symposium on Transportation and Traffic Theory VNU Science Press.Google Scholar
  3. [3]
    Cantarella, G.E., Cascetta, E., Inaudi, D. (1993),“Real time Estimation and Prediction of Origin-Destination Matrices from traffic counts” Proceedings of the PTRC Conference 1993 Manchester.Google Scholar
  4. [4]
    Cascetta, E., Cantarella, G.E. (1991), “A day-to-day and within-day dynamic stochastic assignment model”Transportation Research. 25A,5,277–291.Google Scholar
  5. [5]
    Cascetta, E., Cantarella, G.E. (1992a), “Non linear dynamics and equilibrium in transportation networks”, Submitted to Advances in Equilibrium modelling, analysis and computation - Annals of operation research, A. Nagurney Ed.Google Scholar
  6. [6]
    Cascetta, E., Cantarella, G.E. (1992b), “Modelling dynamics in transportation networks: part I the within-day static case” Presented at Triennial Symposium on Transportation Engineering Univ. Naples, Italy.Google Scholar
  7. [7]
    Cascetta, E., Inaudi, D., Marquis, G.(1993), “Dynamic Etimators of Origin-Destination Matrices using traffic counts”Transportation Science vol. 7, N. 4, pp. 363–374, November 1993.CrossRefGoogle Scholar
  8. [8]
    Dempster, A.P. (1990), In Oliver, R.M. and Smith, J.Q. (eds) “Influence diagrams, belief nets and decision analysis” Wiley: Chichester.Google Scholar
  9. [9]
    Di Gangi, M. (1992), “An algorithm for continuous-flow dynamic network loading” presented at the 6th. World Conference on Transportation Research Lyon, France.Google Scholar
  10. [10]
    HCG (1990), “The Netherlands Value of Time Study: Final Report” Study commissioned by the Dienst Verkeerskunde, Rijkswaterstaat to Hague Consulting GroupFinal report February 1990. Google Scholar
  11. [11]
    Harvey, A.C. (1989), “Forecasting, structural time series models and the Kalman ’filter”C.U.P.: Cambridge. Google Scholar
  12. [12]
    Kalman, R.E. (1960), “A new approach to linear filtering and prediction problems. Journal of Basic Engineering”Transactions ASME. Series D, 35–45.Google Scholar
  13. [13]
    Kitagawa, G. (1987), “Non-Gaussian state space modeling of nonstationary time series [with discussion]”Journal of the American Statistical Association, 1032–63. Google Scholar
  14. [14]
    Ljung, L., and T. Söderstrom (1983), “Theory and Practice of Recursive Identification”Cambridge, Mass: MIT Press. Google Scholar
  15. [15]
    Ministry of Transport (1992), “Dynamic Traffic Management in the Netherlands Transportation and Traffic Research Division”Directorate-General for Public Works and Water Management,Ministry of Transport, Public Works and Water Management. Google Scholar
  16. [16]
    Papageorgiou, M. (1991), “Concise Encyclopedia of Traffic and Transportation Systems”Pergamon Press: Oxford. Google Scholar
  17. [17]
    Smith, J.Q. (1990), “Statistical principles on graphs”In Oliver, R.M. and Smith, J.Q. (eds) Influence diagrams, belief nets and decision analysis. Wiley: Chichester.Google Scholar
  18. [18]
    Toorenburg, J.v. (1989), “Dynamisch schatten van vertragingstijden en file-omvang”Transpute report to Dienst Verkeerskunde Rijkswaterstaat.Google Scholar
  19. [19]
    Transpute (1992), “Vervolgonderzoek algorithmen voor schatten van vertragingstijden en file-omvang bij verkeersmonitoring”Transpute report to Dienst Verkeerskunde Rijkswaterstaat CXT91068.RAPGoogle Scholar
  20. [20]
    Vlist, M.v.d., Arem, B. v., SmuldersS.,(1992) “An on-line procedure for estimating capacity under prevlailing roadway and traffic conditions”Google Scholar
  21. [21]
    West, M., and P.J. Harrison (1989), “Bayesian forecasting and the dynamic linear model”Springer-Verlag. Google Scholar
  22. [22]
    Whittaker, J. (1990), “Graphical Models in Applied Multivariate Statistics”Wiley: Chichester. Google Scholar
  23. [23]
    Whittaker, J. and Garside, S. (1993), “State space models for dynamic traffic networks” in Gunn, H.DYNA-DRIVE II project V2036 Annual Project Review Report - Part A Section 2. Submitted to EC R&D Program Telematic Systems in the Area of Transport.Google Scholar
  24. [24]
    Young, P. (1984), “Recursive Estimation and Time-Series Analysis”Berlin: Springer-Verlag. Google Scholar

Copyright information

© Springer-Verlag Berlin. · Heidelberg 1996

Authors and Affiliations

  • M. Ben-Akiva
    • 1
  • E. Cascetta
    • 2
  • H. Gunn
    • 3
  • D. Inaudi
    • 4
  • J. Whittaker
    • 5
  1. 1.Massachussets Institute of TechnologyUSA
  2. 2.University of NaplesItaly
  3. 3.Hague Consulting GroupNetherlands
  4. 4.Centro Studi sui Sistemi di Trasporto S.p.A. of TurinItaly
  5. 5.University of LancasterEngland

Personalised recommendations