Skip to main content

Homologous nuclear-encoded mitochondrial and cytosolic isoproteins

A review of structure, biosynthesis and genes

  • Chapter

Part of the book series: European Journal of Biochemistry ((EJB REVIEWS,volume 1995))

Abstract

Mitochondrial and cytosolic proteins may be expected to differ in specific traits due to their different intracellular location. However, the identification of these differences between mitochondrial and cytosolic proteins is complicated by the heterogeneity of the two protein groups. These difficulties have been overcome by comparing traits of homologous genes, which are derived from a common ancestor gene, and their gene products.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

pI:

isoelectric point

ΔpI:

pI of mitochondrial isoprotein minus pI of cytosolic isoprotein

Δplpp:

pI precursor protein minus pI mature protein

References

  1. Walker, M. E., Val, D. L., Rohde, M., Devenish, R. J. & Wallace, J. C. (1991) Yeast pyruvate carboxylase: identification of two genes encoding isoenzymes, Biochem. Biophys. Res. Commun. 176, 1210–1217.

    PubMed  CAS  Google Scholar 

  2. Ahmad, P. M. & Ahmad, E (1991) Mammalian pyruvate carboxylase: effect of biotin on the synthesis and translocation of apoenzyme into 3T3-L adipocyte mitochondria, FASEB J. 5, 24822485.

    Google Scholar 

  3. Fukushima, T., Decker, R. V., Anderson, W. M. & Spivey, H. O. (1989) Substrate channeling of NADH and binding of dehydrogenases to complex I, J. Biol. Chem. 264, 16483–16488.

    PubMed  CAS  Google Scholar 

  4. Teller, J. K., Fahien, L. A. & Valdivia, E. (1990) Interactions among mitochondrial aspartate aminotransferase, malate dehydrogenase, and the inner mitochondria) membrane from heart, hepatoma, and liver, J. Biol. Chem. 265, 19486–19494.

    PubMed  CAS  Google Scholar 

  5. Röhlen, D. A., Hoffmann, J., Van der Pas, J. C., Nehls, U., Preis, D., Sackmann, U. & Weiss, H. (1991) Relationship between a subunit of NADH dehydrogenase (complex I) and a protein family including subunits of cytochrome reductase and processing protease of mitochondria, FEBS Lett. 278, 75–78.

    PubMed  Google Scholar 

  6. Rojo, M., Hovius, R., Demel, R. A., Nicolay, K. & Wallimann, T. (1991) Mitochondria) creatine kinase mediates contact formation between mitochondrial membranes, J. Biol. Chem. 266, 2029020 295.

    Google Scholar 

  7. Polakis, P. G. & Wilson, J. E. (1985) An intact hydrophobic N-terminal sequence is critical for binding of rat brain hexokinase to mitochondria, Arch. Biochem. Biophys. 236, 328–337.

    PubMed  CAS  Google Scholar 

  8. Mikelsaar, R. (1987) A view of early cellular evolution, J. Mol. Evol. 25, 168–183.

    PubMed  CAS  Google Scholar 

  9. Gray, M. W. (1989) Origin and evolution of mitochondria) DNA, Annu. Rev. Cell Biol. 5, 25–50.

    PubMed  CAS  Google Scholar 

  10. Hartmann, C., Christen, P. & Jaussi, R. (1991) Mitochondria) protein charge, Nature 352, 762–763.

    PubMed  CAS  Google Scholar 

  11. Creighton, T. E. (1993) Proteins: structures and molecular properties,W. H. Freeman and Company, New York, 2nd edn, p. 108.

    Google Scholar 

  12. Graf-Hausner, U., Wilson, K. J. & Christen, P. (1983) The covalent structure of mitochondria) aspartate aminotransferase from chicken. Identification of segments of the polypeptide chain invariant specifically in the mitochondria) isoenzyme, J. Biol. Chem. 258, 8813–8826.

    PubMed  CAS  Google Scholar 

  13. Küntzel, H. & Köchel, H. G. (1981) Evolution of rRNA and origin of mitochondria, Nature 293, 751–755.

    PubMed  Google Scholar 

  14. Gray, M. W. & Doolittle, W. F. (1982) Has the endosymbiotic hypothesis been proven? Microbiol. Rev. 46, 1–42.

    PubMed  CAS  Google Scholar 

  15. Gray, M. W. (1989) The evolutionary origins of organelles, Trends Genet. 5, 294–299.

    PubMed  CAS  Google Scholar 

  16. Devereux, J., Haeberli, P. & Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX, Nucleic Acids Res. 12, 387–395.

    PubMed  CAS  Google Scholar 

  17. Sander, C. & Schneider, R. (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment, Proteins 9, 56–68.

    PubMed  CAS  Google Scholar 

  18. Birktoft, J. J., Fernley, R. T., Bradshaw, R. A. & Banaszak, L. J. (1982) Amino acid sequence homology among the 2-hydroxy acid dehydrogenases: mitochondrial and cytoplasmic malate dehydrogenases form a homologous system with lactate dehydrogenase, Proc. Natl Acad. Sci. USA 79, 6166–6170.

    PubMed  CAS  Google Scholar 

  19. Roderick, S. L. & Banaszak, L. J. (1986) The three-dimensional structure of porcine heart mitochondria) malate dehydrogenase at 3.0-A resolution, J. Biol. Chem. 261, 9461–9464.

    PubMed  CAS  Google Scholar 

  20. Setoyama, C., Joh, T., Tsuzuki, T. & Shimada, K. (1988) Structural organization of the mouse cytosolic malate dehydrogenase gene: comparison with that of the mouse mitochondria) malate dehydrogenase gene, J. Mol. Biol. 202, 355–364.

    PubMed  CAS  Google Scholar 

  21. Christen, P. & Metzler, D. E. (1985) Transaminases, John Wiley & Sons, New York, p. 176.

    Google Scholar 

  22. Mehta, P. K., Hale, T. I. & Christen, P. (1993) Aminotransferases: demonstration of homology and division into evolutionary subgroups, Eur. J. Biochem. 214, 549–561.

    PubMed  CAS  Google Scholar 

  23. Mehta, P. K., Hale, T. I. & Christen, R. (1989) Evolutionary relationships among aminotransferases. Tyrosine aminotransferase, histidinol-phosphate aminotransferase, and aspartate aminotransferase are homologous proteins, Eur. J. Biochem. 186, 249–253.

    PubMed  CAS  Google Scholar 

  24. Christen, R, Jaussi, R., Juretic, N., Mehta, P. K., Hale, T. I. & Ziak, M. (1990) Evolutionary and biosynthetic aspects of aspartate aminotransferase isoenzymes and other aminotransferases, Ann. N. Y. Acad. Sci. 585, 331–338.

    Google Scholar 

  25. Mehta, R. K., Hale, T. I. & Christen, R. (1991) Enzymes dependent on pyridoxal phosphate and other carbonyl compounds as cofactors, in Proc. 8th Int. Symp. on Vitamin B 6 and Carbonyl Catalysis in Osaka, Japan ( Fukui, T., Kagamiyama, H., Soda, K. & Wada, H., eds) pp. 35–42, Pergamon Press, Oxford.

    Google Scholar 

  26. Birolo, L., Arnone, M. I., Cubellis, M. V., Andreotti, G., Nitti, G., Marino, G. & Sannia, G. (1991) The active site of Sulfolobus solfataricus aspartate aminotransferase, Biochim. Biophys. Acta 1080, 198–204.

    PubMed  CAS  Google Scholar 

  27. Talesa, V., Rosi, G., Contenti, S., Mangiabene, C., Lupattelli, M., Norton, S. J., Giovannini, E. & Principato, G. B. (1990) Presence of glyoxalase II in mitochondria from spinach leaves: cornparison with the enzyme from cytosol, Biochem. Int. 22, 1115 1120.

    Google Scholar 

  28. Glick, B. & Schatz, G. (1991) Import of proteins into mitochondria, Annu. Rev. Genet. 25, 21–44.

    PubMed  CAS  Google Scholar 

  29. Pfanner, N., Rassow, J., van der Klei, I. J. & Neupert, W. (1992) A dynamic model of the mitochondria) protein import machinery, Cell 68, 999–1002.

    PubMed  CAS  Google Scholar 

  30. Brandt, U., Yu, L., Yu, C.-A. & Trumpower, B. L. (1993) The mitochondrial targeting presequence of the Rieske iron-sulfur protein is processed in a single step after insertion into the cytochrome bc, complex in mammals and retained as a subunit in the complex, J. Biol. Chem. 268, 8387–8390.

    PubMed  CAS  Google Scholar 

  31. Galanis, M., Devenish, R. J. & Nagley, R. (1991) Duplication of leader sequence for protein targeting to mitochondria leads to increased import efficiency, FEBS Lett. 282, 425–430.

    PubMed  CAS  Google Scholar 

  32. Hartmann, C. M., Lindenmann, J.-M., Christen, R. & Jaussi, R. (1991) The precursor of mitochondrial aspartate aminotransferase is imported into mitochondria faster than the homologous cytosolic isoenzyme with the same presequence attached, Biochem. Biophys. Res. Commun. 174, 1232–1238.

    PubMed  CAS  Google Scholar 

  33. Von Heijne, G. (1986) Mitochondria) targeting sequences may form amphiphilic helices, EMBO J. 5, 1335–1342.

    Google Scholar 

  34. Verner, K. & Schatz, G. (1988) Protein translocation across membranes, Science 241, 1307–1313.

    PubMed  CAS  Google Scholar 

  35. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D. (1989) Molecular biology of the cell, pp. 341–401, Garland Publishing Inc., New York and London.

    Google Scholar 

  36. Ogawa, S., Rottenberg, H., Brown, T. R., Shulman, R. G., Castillo, C. L. & Glynn, R (1978) High-resolution 31P nuclear magnetic resonance study of rat liver mitochondria, Proc. Natl Acad. Sci. USA 75, 1796–1800.

    PubMed  CAS  Google Scholar 

  37. Srere, P. A. (1980) The infrastructure of the mitochondrial matrix, Trends Biochem. Sci. 5, 120–121.

    CAS  Google Scholar 

  38. Meer, L. (1988) Limitierte Spaltung der nativen Isoenzyme der Aspartat-Aminotransferase vom Huhn and Schwein durch Trypsin. Chemische and immunologische Charakterisierung der proteolytisch modifizierten Proteine, Diploma thesis, University of Zürich.

    Google Scholar 

  39. Behra, R. & Christen, R. (1986) In vitro import into mitochondria of the precursor of mitochondria) aspartate aminotransferase, J. Biol. Chem. 261, 257–263.

    CAS  Google Scholar 

  40. Hartmann, C. M. (1992) Contribution of the mature moiety of mitochondrial precursor proteins to the efficiency of their importation, Ph. D. thesis, University of Zürich, pp. 1–51.

    Google Scholar 

  41. Hartmann, C. M., Gehring, H. & Christen, R (1993) The mature form of imported mitochondrial proteins undergoes conformational changes upon binding to isolated mitochondria, Eue. J. Biochem. 218, 905–910.

    CAS  Google Scholar 

  42. Wallimamn, T. & Eppenberger, H. M. (1990) The subcellular cornpartmentation of creatine kinase isozymes as a precondition for a proposed phosphoryl-creatine circuit, Prog. Clin. Biol. Res. 344, 877–889.

    Google Scholar 

  43. Levitsky, D. O., Levchenko, T. S., Saks, V. A., Sharov, V. G. & Smirnov, V. N. (1977) The functional coupling between Ca2+ATPase and creatine kinase in heart muscle sarcoplasmic reticulum, Biochimia 42, 1766–1773.

    Google Scholar 

  44. Suzuki, T., Sato, M., Yoshida, T. & Tuboi, S. (1989) Rat liver mitochondria) and cytosolic fumarases with identical amino acid sequences are encoded from a single gene, J. Biol. Chem. 264, 2581–2586.

    PubMed  CAS  Google Scholar 

  45. Tuboi, S., Suzuki, T., Sato, M. & Yoshida, T. (1990) Rat liver mitochondrial and cytosolic fumarases with identical amino acid sequences are encoded from a single mRNA with two alternative in-phase AUG initiation sites, Adv. Enzyme Regul. 30, 289–304.

    PubMed  CAS  Google Scholar 

  46. Petrova-Benedict, R., Robinson, B. H., Stacey, T. E., Mistry, J. & Chalmers, R. A. (1987) Deficient fumarase activity in an infant with fumaricacidemia and its distribution between the different forms of the enzyme seen on isoelectric focusing, Am. J. Hum. Genet. 40, 257–266.

    PubMed  CAS  Google Scholar 

  47. Luzikov, V. N. (1985) Mitochondrial biogenesis and breakdown, Consultants Bureau, New York, pp. 1–362.

    Google Scholar 

  48. Luzikov, V. N. (1986) Proteolytic control over topogenesis of membrane proteins, FEBS Lett. 200, 259–264.

    PubMed  CAS  Google Scholar 

  49. Jaussi, R. (1994) Homologous nuclear-encoded mitochondria) and cytosolic isoproteins: a review of structure, biosynthesis and genes, Habilitationsschrift, University of Zürich, pp. 1–29.

    Google Scholar 

  50. Juretic, N., Jaussi, R., Mattes, U. & Christen, P. (1987) Genes of nuclear encoded mitochondrial proteins: evidence for a variant of the 3’ splice-site consensus sequence, Nucleic Acids Res. 15, 10083–10086.

    PubMed  CAS  Google Scholar 

  51. Mount, S. M. (1982) A catalogue of splice junction sequences, Nucleic Acids Res. 10, 459–472.

    PubMed  CAS  Google Scholar 

  52. Juretic, N., Mattes, U., Ziak, M, Christen, R. & Jaussi, R. (1990) Structure of the genes of two homologous intracellularly hetero-topic isoenzymes. Cytosolic and mitochondria) aspartate aminotransferase of chicken, Eur. J. Biochem. 192, 119–126.

    PubMed  CAS  Google Scholar 

  53. Wu, M. & Tzagoloff, A. (1987) Mitochondrial and cytoplasmic fumarases in Saccharomyces cerevisiae are encoded by a single nuclear gene FUMI, J. Biol. Chem. 262, 12275–12282.

    PubMed  CAS  Google Scholar 

  54. Tropschug, M., Nicholson, D. W., Hartl, F.-U., Köhler, H., Pfanner, N., Wachter, E. & Neupert, W. (1988) Cyclosporin A-binding protein (cyclophilin) of Neurospora crassa. One gene codes for both the cytosolic and mitochondrial forms, J. Biol. Chem. 263, 14 433–14 440.

    Google Scholar 

  55. Natsoulis, G., Hilger, F. & Fink, G. R. (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae, Cell 46, 235–243.

    PubMed  CAS  Google Scholar 

  56. Kubelik, A. R., Turcq, B. & Lambowitz, A. M. (1991) The Neuro-spora crassa cyt-20 gene encodes cytosolic and mitochondria) valyl-tRNA synthetases and may have a second function in addition to protein synthesis, Mol. Cell. Biol. 11, 4022–4035.

    PubMed  CAS  Google Scholar 

  57. Chatton, B., Walter, R, Ebel, J. R, Lacroute, F. & Fasiolo, F. (1988) The yeast VAS] gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases, J. Biol. Chem. 263, 52–57.

    PubMed  CAS  Google Scholar 

  58. Boguta, M., Hunter, L. A., Shen, W.-C., Gillman, E. C., Martin, N. C. & Hopper, A. K. (1994) Subcellular locations of MODS proteins: mapping of sequences sufficient for targeting to mitochondria and demonstration that mitochondria) and nuclear isoforms comingle in the cytosol, Mol. Cell. Biol. 14, 2298–2306.

    PubMed  CAS  Google Scholar 

  59. Hopper, A. K., Furukawa, A. H., Pham, H. D. & Martin, N. C. (1982) Defects in modification of cytoplasmic and mitochondria) Jaussi (Eur. J. Biochem. 228) transfer RNAs are caused by single nuclear mutations, Cell 28, 543–550.

    Google Scholar 

  60. Ellis, S. R., Morales, M. J., Li, J. M., Hopper, A. K. & Martin, N. C. (1986) Isolation and characterization of the TRM1 locus, a gene essential for the Nz,NN-dimethylguanosine modification of both mitochondrial and cytoplasmic tRNA in Saccharomyces cerevisiae, J. Biol. Chem. 261, 9703–9709.

    PubMed  CAS  Google Scholar 

  61. Slusher, L. B., Gillman, E. C., Martin, N. C. & Hopper, A. K. (1991) mRNA leader length and initiation codon context determine alternative AUG selection for the yeast gene MODS, Proc. Natl Acad. Sci. USA 88, 9789–9793.

    Google Scholar 

  62. Brown, W. M. (1980) Polymorphism in mitochondria) DNA of humans as revealed by restriction endonuclease analysis, Proc. Natl Acad. Sci. USA 77, 3605–3609.

    PubMed  CAS  Google Scholar 

  63. Monnat, R. J. & Loeb, L. A. (1985) Nucleotide sequence preservation of human mitochondria) DNA, Proc. Natl Acad. Sci. USA 82, 2895–2899.

    PubMed  CAS  Google Scholar 

  64. Monnat, R. J., Maxwell, C. L. & Loeb, L. A. (1985) Nucleotide sequence preservation of human leukemic mitochondrial DNA, Cancer Res. 45, 1809–1814.

    PubMed  CAS  Google Scholar 

  65. Avise, J. C. (1991) Ten unorthodox perspectives on evolution prompted by comparative population genetic findings on mitochondrial DNA, Anno. Rev. Genet. 25, 45–69.

    CAS  Google Scholar 

  66. Farrelly, F. & Butow, R. A. (1983) Rearranged mitochondrial genes in the yeast nuclear genome, Nature 301, 296–301.

    PubMed  CAS  Google Scholar 

  67. Wright, R. M. & Cummings, D. J. (1983) Integration of mitochondria) gene sequences within the nuclear genome during senescence in a fungus, Nature 302, 86–88.

    PubMed  CAS  Google Scholar 

  68. Gellissen, G., Bradfield, J. Y., White, B. N. & Wyatt, G. R. (1983) Mitochondrial DNA sequences in the nuclear genome of a locust, Nature 301, 631–634.

    PubMed  CAS  Google Scholar 

  69. Jacobs, H. T., Posakony, J. W., Grula, J. W., Roberts, J. W., Xin, J., Britten, R. J. & Davidson, E. H. (1983) Mitochondrial DNA sequences in the nuclear genome of Strongylocentrotus purpuratus, J. Mol. Biol. 165, 609–632.

    PubMed  CAS  Google Scholar 

  70. Kemble, R. J., Mans, R. J., Gabay-Laughnan, S. & Laughnan, J. R. (1983) Sequences homologous to episomal mitochondrial DNAs in the maize nuclear genome, Nature 304, 744–747.

    CAS  Google Scholar 

  71. Hadler, H. I., Dimitrijevic, B. & Mahalingam, R. (1983) Mitochondrial DNA and nuclear DNA from normal rat liver have a common sequence, Proc. Natl Acad. Sci. USA 80, 6495–6499.

    PubMed  CAS  Google Scholar 

  72. Nomiyama, H., Fukuda, M., Wakasugi, S., Tsuzuki, T. & Shimada, K. (1985) Molecular structures of mitochondrial-DNA-like sequences in human nuclear DNA, Nucleic Acids Res. 13, 1649–1658.

    PubMed  CAS  Google Scholar 

  73. Diffley, J. F. X. & Stillman, B. (1991) A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria, Proc. Natl Acad. Sci. USA 88, 7864–7868.

    PubMed  CAS  Google Scholar 

  74. Shay, J. W., Baba, T., Zhan, Q., Kamimura, N. & Cuthbert, J. A. (1991) HeLaTG cells have mitochondrial DNA inserted into the c-rnyc oncogene, Oncogene 6, 1869–1874.

    PubMed  CAS  Google Scholar 

  75. Fukuchi, M., Shikanai, T., Kossykh, V. G. & Yamada, Y. (1991) Analysis of nuclear sequences homologous to the B4 plasmidlike DNA of rice mitochondria: evidence for sequence transfer from mitochondria to nuclei, Current Genet. 20, 487–494.

    CAS  Google Scholar 

  76. Ossorio, P. N., Sibley, L. D. & Boothroyd, J. C. (1991) Mitochondrial-like DNA sequences flanked by direct and inverted repeats in the nuclear genome of Toxoplasma gondii, J. Mol. Biol. 222, 525–536.

    PubMed  CAS  Google Scholar 

  77. Smith, M. F., Thomas, W. K. & Patton, J. L. (1992) Mitochondrial DNA-like sequence in the nuclear genome of an akodontine rodent, Mol. Biol. Evol. 9, 204–215.

    PubMed  CAS  Google Scholar 

  78. Thorsness, P. E. & Fox, T. D. (1993) Nuclear mutations in Saccharomyces cerevisiae that affect the escape of DNA from mitochondria to the nucleus, Genetics 134, 21–28.

    PubMed  CAS  Google Scholar 

  79. Thorsness, P. E. & Fox, T. D. (1990) Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae, Nature 346, 376–379.

    PubMed  CAS  Google Scholar 

  80. Rand, D. M. & Harrison, R. G. (1986) Mitochondrial transmission genetics in crickets, Genetics 114, 955–970.

    PubMed  CAS  Google Scholar 

  81. Wallis, G. P. (1987) Mitochondrial DNA insertion polymorphism and germ line heteroplasmy in the Triturus cristatus species complex, Heredity 58, 229–238.

    PubMed  Google Scholar 

  82. Sugiyama, S., Hattori, K., Hayakawa, M. & Ozawa, T. (1991) Quantitative analysis of age-associated accumulation of mitochondria) DNA with deletion in human hearts, Biochem. Biophys. Res. Commun. 180, 894–899.

    PubMed  CAS  Google Scholar 

  83. Katayama, M., Tanaka, M., Yamamoto, H., Ohbayashi, T., Nimura, Y. & Ozawa, T. (1991) Deleted mitochondrial DNA in the skeletal muscle of aged individuals, Biochem. Mt. 25, 47–56.

    CAS  Google Scholar 

  84. Yen, T.-C., Pang, C.-Y., Hsieh, R.-H., Su, C.-H., King, K.-L. & Wei, Y.-H. (1992) Age-dependent 6 kb deletion in human liver mitochondrial DNA, Biochem. Int. 26, 457–468.

    PubMed  CAS  Google Scholar 

  85. Koehler, C. M., Lindberg, G. L., Brown, D. R., Beitz, D. C., Freeman, A. E., Mayfield, J. E. & Myers, A. M. (1991) Replacement of bovine mitochondrial DNA by a sequence variant within one generation, Genetics 129, 247–255.

    PubMed  CAS  Google Scholar 

  86. Sonderegger, P. & Christen, P. (1978) Comparison of the evolution rates of cytosolic and mitochondrial aspartate aminotransferase, Nature 275, 157–159.

    PubMed  CAS  Google Scholar 

  87. Ward, R. D. & Skibinski, D. O. (1988) Evidence that mitochondria) isozymes are genetically less variable than cytoplasmic isozymes, Genet. Res. 51, 121–127.

    PubMed  CAS  Google Scholar 

  88. Guthrie, C. (1991) Messenger RNA splicing in yeast: clues to why the spliceosome is a ribonucleoprotein, Science 253, 157–163.

    PubMed  CAS  Google Scholar 

  89. Kennell, J. C., Moran, J. V., Perlman, P. S., Butow, R. A. & Lambowitz, A. M. (1993) Reverse transcriptase activity associated with maturase-encoding group II introns in yeast mitochondria, Cell 73, 133–146.

    PubMed  CAS  Google Scholar 

  90. Ohtaka, C. & Ishikawa, H. (1993) Accumulation of adenine and thymine in a groE-homologous operon of an intracellular symbiont, J. Mol. Evol. 36, 121–126.

    PubMed  CAS  Google Scholar 

  91. Montzka, K. A. & Steitz, J. A. (1988) Additional low-abundance human small nuclear ribonucleoproteins: U11, U12, etc, Proc. Natl Acad. Sci. USA 85, 8885–8889.

    PubMed  CAS  Google Scholar 

  92. Hancock, K. & Hajduk, S. L. (1990) The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded, J. Biol. Chem. 265, 19208–19215.

    Google Scholar 

  93. Schneider, A., Martin, J. & Agabian, N. (1994) A nuclear encoded tRNA of Trypanosoma brucei is imported into mitochondria, Mol. Cell. Biol. 14, 2317–2322.

    PubMed  CAS  Google Scholar 

  94. Dietrich, A., Weil, J. H. & Maréchal-Drouard, L. (1992) Nuclear-encoded transfer RNAs in plant mitochondria, Annu. Rev. Cell Biol. 8, 115–131.

    PubMed  CAS  Google Scholar 

  95. Gavel, Y. & Von Heijne, G. (1992) The distribution of charged amino acids in mitochondrial inner-membrane proteins suggests different modes of membrane integration for nuclearly and mitochondrially encoded proteins, Eue J. Biochem. 205,1207—1215.

    CAS  Google Scholar 

  96. Welch, G. R. & Easterby, J. S. (1994) Metabolic channeling versus free diffusion: transition-time analysis, Trends Biochem. Sci. 19, 193 —197.

    PubMed  CAS  Google Scholar 

  97. Frank, R., Trosin, M., Tomasselli, A. G., Schulz, G. E. & Schirmer, R. H. (1984) Mitochondrial adenylate kinase (AK2) from bovine heart. Homology with the cytosolic isoenzyme in the catalytic region, Eur. J. Biochem. 141, 629–636.

    PubMed  CAS  Google Scholar 

  98. Eanes, R. Z. & Kun, E. (1971) Separation and characterization of aconitate hydratase isoenzymes from pig tissues, Biochim. Biophys. Acta 227, 204–210.

    PubMed  CAS  Google Scholar 

  99. Sapico, V., Litwack, G. & Criss, W. E. (1972) Purification of rat liver adenylate kinase isozyme II and comparison with isozyme III, Biochim. Biophys. Acta 258, 436–445.

    PubMed  CAS  Google Scholar 

  100. Kubo, S. & Noda, H. (1974) Adenylate kinase of porcine heart, Eur. J. Biochem. 48, 325–331.

    PubMed  CAS  Google Scholar 

  101. Frank, R., Trosin, M., Tomasselli, A. G., Noda, L., Krauth-Siegel, R. L. & Schirmer, R. H. (1986) Mitochondrial adenylate kinase (AK2) from bovine heart. The complete primary structure, Eur. J. Biochem. 154, 205–211.

    PubMed  CAS  Google Scholar 

  102. Ruscak, M., Orlicky, J., Zubor, V. & Hager, H. (1982) Alanine aminotransferase in bovine brain: purification and properties, J. Neurochem. 39, 210–216.

    PubMed  CAS  Google Scholar 

  103. De Rosa, G., Burk, T. L. & Swick, R. W. (1979) Isolation and characterization of mitochondria) alanine aminotransferase from porcine tissue, Biochim. Biophys. Acta 567, 116–124.

    PubMed  Google Scholar 

  104. Koivula, T. & Koivusalo, M. (1975) Different forms of rat liver aldehyde dehydrogenase and their subcellular distribution, Biochim. Biophys. Acta 397, 9–23.

    PubMed  CAS  Google Scholar 

  105. Dickinson, F. M. & Berrieman, S. (1979) The separation of sheep liver cytoplasmic and mitochondrial aldehyde dehydrogenases by isoelectric focusing, and observations on the purity of preparations of the cytoplasmic enzyme, and their sensitivity towards inhibition by disulfiram, Biochem. J. 179, 709–712.

    PubMed  CAS  Google Scholar 

  106. Agnew, K. E. M., Bennett, A. F., Crow, K. E., Greenway, R. M., Blackwell, L. F. & Buckley, P. D. (1981) A reinvestigation of the purity, iosoelectric points and some kinetic properties of the aldehyde dehydrogenases from sheep liver, Eur. J. Biochem. 119, 79–84.

    PubMed  CAS  Google Scholar 

  107. Braun, T., Bober, E., Singh, S., Agarwal, D. P. & Goedde, H. W. (1987) Isolation and sequence analysis of a full-length cDNA clone coding for human mitochondrial aldehyde dehydrogenase, Nucleic Acids Res. 15, 3179.

    PubMed  CAS  Google Scholar 

  108. Sonderegger, P., Jaussi, R., Christen, P. & Gehring, H. (1982) Biosynthesis of aspartate aminotransferases. Both the higher molecular mass precursor of mitochondrial aspartate aminotransferase and the cytosolic isoenzyme are synthesized on free polysomes, J. Biol. Chem. 257, 3339–3345.

    PubMed  CAS  Google Scholar 

  109. Kuramitsu, S., Inoue, K., Kondo, K., Aki, K. & Kagamiyama, H. (1985) Aspartate aminotransferase isozymes from rabbit liver: purification and properties, J. Biochem. (Tokyo) 97, 1337–1345.

    CAS  Google Scholar 

  110. Taniguchi, M. & Sugiyama, T. (1990) Aspartate aminotransferase from Eleusine coracana, a C4 plant: purification, characterization, and preparation of antibody, Arch. Biochem. Biophys. 282, 427–432.

    PubMed  CAS  Google Scholar 

  111. Romestant, M., Jerebzoff, S., Noaillac-Depeyre, J., Gas, N. & Dargent, R. (1989) Aspartate aminotransferase isoenzymes in Leptosphaeria michotii Properties and intracellular location (published erratum appears in Eur. J. Biochem. 182,737), Eur. J. Biochem. 180,153–159.

    PubMed  CAS  Google Scholar 

  112. Cronin, V. B., Maras, B., Barra, D. & Doonan, S. (1991) The amino acid sequence of the aspartate aminotransferase from baker’s yeast (Saccharomyces cerevisiae), Biochem. J. 277, 335–340.

    PubMed  CAS  Google Scholar 

  113. Rosenberg, U. B., Eppenberger, H. M. & Perriard, J. C. (1981) Occurrence of heterogeneous forms of the subunits of creatine kinase in various muscle and nonmuscular tissues and their behaviour during myogenesis, Eur. J. Biochem. 116, 87–92.

    PubMed  CAS  Google Scholar 

  114. Schlegel, J., Wyss, M., Schürch, U., Schnyder, T., Quest, A., Wegmann, G., Eppenberger, H. M. & Wallimann, T. (1988) Mitochondrial creatine kinase from cardiac muscle and brain are two distinct isoenzymes but both form octameric molecules, J. Biol. Chem. 263, 16 963 —16 969.

    Google Scholar 

  115. Talesa, V., Uotila, L., Koivusalo, M., Principato, G., Giovannini, E. & Rosi, G. (1988) Demonstration of glyoxalase H in rat liver mitochondria. Partial purification and occurrence in multiple forms, Biochim. Biophys. Acta 955, 103–110.

    PubMed  CAS  Google Scholar 

  116. Clinkenbeard, K. D., Reed, W. D., Mooney, R. A. & Lane, M. D. (1975) Intracellular localization of the 3-hydroxy-3-methylglutaryl coenzyme A cycle enzymes in liver, J. Biol. Chem. 250, 3108–3116.

    PubMed  CAS  Google Scholar 

  117. Hagele, E., Neeff, J. & Mecke, D. (1978) The malate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, characterisation and studies on their regulation, Eur. J. Biochem. 83, 67–76.

    PubMed  CAS  Google Scholar 

  118. Beneviste, K. & Munkres, K. D. (1970) Cytoplasmic and mitochondrial malate dehydrogenases of Neurospora, Biochim. Biophys. Acta 220, 161–177.

    Google Scholar 

  119. Dölken, G., Leisner, E. & Pette, D. (1974) Turnover of malatedehydrogenase isoenzymes in rabbit liver and heart, Eue J. Biochem. 47, 333–342.

    Google Scholar 

  120. Jo, J.-S., Ishihara, N. & Kikuchi, G. (1974) Occurrence and properties of four forms of phosphoenolpyruvate carboxykinase in the chicken liver, Arch. Biochem. Biophys. 160, 246–254.

    PubMed  CAS  Google Scholar 

  121. Weldon, S. L., Rando, A., Matathias, A. S., Hod, Y., Kalonick, R A., Savon, S., Cook, J. S. & Hanson, R. W. (1990) Mitochondrial phosphoenolpyruvate carboxykinase from the chicken. Comparison of the cDNA and protein sequences with the cytosolic isozyme, J. Biol. Chem. 265, 7308–7317.

    PubMed  CAS  Google Scholar 

  122. Gallwitz, W. E., Jacoby, G. H., Ray, R D. & Lambeth, D. O. (1988) Purification and characterization of the isozymes of phosphoenolpyruvate carboxykinase from rabbit liver, Biochim. Biophys. Acta 964, 36–45.

    PubMed  CAS  Google Scholar 

  123. Masuda, T., Sakamoto, M., Nishizaki, I., Hayashi, H., Yamamoto, M. & Wada, H. (1987) Affinity purification and characterization of serine hydroxymethyltransferases from rat liver, J. Biochem. (Tokyo) 101, 643–652.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 FEBS

About this chapter

Cite this chapter

Jaussi, R. (1995). Homologous nuclear-encoded mitochondrial and cytosolic isoproteins. In: EJB Reviews. European Journal of Biochemistry, vol 1995. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85252-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85252-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60984-1

  • Online ISBN: 978-3-642-85252-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics