EJB Reviews pp 191-220 | Cite as

Ubiquitin and the enigma of intracellular protein degradation

  • Herbert P. Jennissen
Part of the European Journal of Biochemistry book series (EJB REVIEWS, volume 1995)


Contrary to widespread belief, the regulation and mechanism of degradation for the mass of intracellular proteins (i.e. differential, selective protein turnover) in vertebrate tissues is still a major biological enigma. There is no evidence for the conclusion that ubiquitin plays any role in these processes. The primary function of the ubiquitin-dependent protein degradation pathway appears to lie in the removal of abnormal, misfolded, denatured or foreign proteins in some eukaryotic cells. ATP/ubiquitin-dependent proteolysis probably also plays a role in the degradation of some so-called ‘short-lived’ proteins. Evidence obtained from the covalent modification of such natural substrates as calmodulin, histones (H2A, H2B) and some cell membrane receptors with ubiquitin indicates that the reversible interconversion of proteins with ubiquitin followed by concomitant functional changes may be of prime importance.


Ubiquitin ubiquitin-protein ligase (El E2 E3) ubiquitin—calmodulin ligase isopeptidase 26S protease 





ubiquityl calmodulin

uCaM u2CaM, u3CaM and u4CaM

ubiquityl-calmodulin with one, two, three and four molecules ubiquitin/calmodulin molecule

uCaM-Syn Fl and uCaM-Syn F2

uCaM synthetase protein factors 1 and 2


platelet derived growth factor


cellulose-enriched reticulocyte lysate fraction II


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Winnacker, E.-L. (1992) Guido R. Hartmann, Nachrichtenbl. Chem. Tech. Lab. 40, 496–497.Google Scholar
  2. 2.
    Busch, H., and Goldknopf, I. L. (1981) Ubiquitin-protein conjugates, Mol. Cell. Biochem. 40, 173–1872.PubMedGoogle Scholar
  3. 3.
    Hershko, A., and Ciechanover, A. (1982) Mechanisms of intracellular protein breakdown, Annu. Rev. Biochem. 51, 335–364.PubMedGoogle Scholar
  4. 4.
    Hershko, A. (1983) Ubiquitin: roles in protein modification and breakdown, Cell 34, 11–12.Google Scholar
  5. 5.
    Finley, D., and Varshaysky, A. (1985) The ubiquitin system: functions and mechanisms, Trends Biochem. Sci. 10, 343–347.Google Scholar
  6. 6.
    Rechsteiner, M. (1987) Ubiquitin-mediated pathways for intracellular proteolysis, Annu. Rev. Cell. Biol. 3, 1–30.PubMedGoogle Scholar
  7. 7.
    Wilkinson, K. D. (1987) Protein ubiquitination: a regulatory post-translational modification, Anticancer Drug Res. 2, 211–229.Google Scholar
  8. 8.
    Sharp, P. M., and Li, W-H. (1987) Molecular evolution of ubiquitin genes, Trends Ecol. Evol. 2, 328–332.PubMedGoogle Scholar
  9. 9.
    Hershko, A. (1988) Ubiquitin-mediated protein degradation, J. Biol. Chem. 263, 15 237–15 240.Google Scholar
  10. 10.
    Cook, J., and Chock, P. B. (1988) Ubiquitin: a review on a ubiquitous biofactor in eukaryotic cells, BioFactors 1, 133–146.PubMedGoogle Scholar
  11. 11.
    Ciechanover, A., and Schwartz, A. L. (1989) How are substrates recognized by the ubiquitin-mediated proteolytic system? Trends Biochem. Sci. 14, 483–488.PubMedGoogle Scholar
  12. 12.
    Pohlmann, L., and Wettern, M. (1989) The ubiquitin system in higher and lower plants — pathways in protein metabolism, Bot. Acta 102, 21–30.Google Scholar
  13. 13.
    Jentsch, S., Seufert, W., Sommer, T., and Reins, H.-A. (1990) Ubiquitin-conjugating enzymes: novel regulators of eukaryotic cells, Trends Biochem. Sci. 15, 195–198.PubMedGoogle Scholar
  14. 14.
    Monia, B. P., Ecker, D. J., and Crooke, S. T. (1990) New perspectives on the structure and function of ubiquitin, Bio/Technology 8, 209–215.Google Scholar
  15. 15.
    Ciechanover, A., and Gonen, H. (1990) The ubiquitin-mediated proteolytic pathway: Enzymology and mechanisms of recognition of the proteolytic substrates, Semin. Cell Biol. 1, 415–422.PubMedGoogle Scholar
  16. 16.
    Ciechanover, A. (1991) The ubiquitin-mediated system for intracellular protein degradation, J. Basic Clin. Physiol. Pharmacol. 2, 141–159.PubMedGoogle Scholar
  17. 17.
    Rechsteiner, M. (1991) Natural substrates of the ubiquitin proteolytic pathway, Cell 66, 615–618.PubMedGoogle Scholar
  18. 18.
    Haas, A. L. (1991) Ubiquitin-mediated processes in erythroid cell maturation, Adv. Exp. Med. Biol. 307, 191–205.PubMedGoogle Scholar
  19. 19.
    Hershko, A. (1991) The ubiquitin pathway for protein degradation, Trends Biochem. Sci. 16, 265–268.PubMedGoogle Scholar
  20. 20.
    Mayer, R. J., Arnold, J., Laszlo, L., Landon, M., and Lowe, J. (1991) Ubiquitin in health and disease, Biochim. Biophys. Acta 1089, 141–157.PubMedGoogle Scholar
  21. 21.
    Finley, D., and Chau, V. (1991) Ubiquitination, Annu. Rev. Cell Biol. 7, 25–69.PubMedGoogle Scholar
  22. 22.
    Jentsch, S. (1992) Ubiquitin-dependent protein degradation, Trends Cell Biol. 2, 98–103.PubMedGoogle Scholar
  23. 23.
    Hershko, A., and Ciechanover, A. (1992) The ubiquitin system for protein degradation, Annu. Rev. Biochem. 61, 761–807.PubMedGoogle Scholar
  24. 24.
    Mayer, R. J., and Doherty, F. J. (1992) Ubiquitin, Essays Biochem. 27, 37–48.PubMedGoogle Scholar
  25. 25.
    Hochstrasser, M. (1992) Ubiquitin and intracellular protein degradation, Curr Opin. Cell. Biol. 4, 1024–1031.PubMedGoogle Scholar
  26. 26.
    Jentsch, S. (1992) The ubiquitin-conjugation system, Annu. Rev. Genet. 26, 179–207.PubMedGoogle Scholar
  27. 27.
    Goldberg, A. L. (1992) The mechanisms and functions of ATP-dependent proteases in bacterial and animal cells, Eur. J. Biochem. 203, 9–23.PubMedGoogle Scholar
  28. 28.
    Hilt, W., and Wolf, D. H. (1992) Stress-induced proteolysis in yeast, Mol. Microbiol. 6, 2437–2442.PubMedGoogle Scholar
  29. 29.
    Gottesman, S., and Maurizi, M. R. (1992) Regulation of proteolysis: energy-dependent proteases and their targets, Microbiol. Rev. 56, 592–621.PubMedGoogle Scholar
  30. 30.
    Mayer, R. J., Laszlo, L., Landon, M., Hope, J., and Lowe, J. (1992) Ubiquitin, lysosomes and neurodegenerative diseases, Ann. NY Acad. Sci. 674, 149–60.PubMedGoogle Scholar
  31. 31.
    Schwartz, A. L., and Ciechanover, A. (1992) Ubiquitin-mediated protein modification and degradation, Am. J. Respir. Cell. Mol. Biol. 7, 463–468.PubMedGoogle Scholar
  32. 32.
    Varshaysky, A. (1992) The N-end rule, Cell 69, 725–735.Google Scholar
  33. 33.
    Bradbury, E. M. (1992) Reversible histone modifications and the chromosome cell cycle, BioEssays 14, 9–16.PubMedGoogle Scholar
  34. 34.
    Lowe, J., Mayer, R. J., and Landon, M. (1993) Ubiquitin in neurodegenerative diseases, Brain Pathol. 3, 55–65.PubMedGoogle Scholar
  35. 35.
    Ciechanover, A. (1993) The ubiquitin-mediated proteolytic pathway, Brain Pathol. 3, 67–75.PubMedGoogle Scholar
  36. 36.
    Orlowski, M. (1993) The multicatalytic proteinase complex (proteasome) and intracellular protein degradation: diverse functions of an intracellular particle, J. Lab. Clin. Med. 121, 187–189.PubMedGoogle Scholar
  37. 37.
    Rivett, A. J. (1993) Proteasomes: Multicatalytic proteinase complexes, Biochem. J. 291, 1–10.PubMedGoogle Scholar
  38. 38.
    Rechsteiner, M. (1988) Ubiquitin, Plenum Press, New York and London.Google Scholar
  39. 39.
    Siekevitz, P. (1991) Citations and the tenor of the times, FASEB J. 5, 139.PubMedGoogle Scholar
  40. 40.
    Rechsteiner, M. (1988) Ubiquitin, pp. 1–3, Plenum Press, New York and London.Google Scholar
  41. 41.
    Michalek, M. T., Grant, E. P., Gramm, C., Goldberg, A. L., and Rock, K. L. (1993) A role for the ubiquitin-dependent proteolytic pathway in MHC class I-restricted antigen presentation, Nature 363, 552–554.PubMedGoogle Scholar
  42. 42.
    Schoenheimer, R. (1949) The dynamic state of body constituents, pp. 3–79, Harvard University Press, Cambridge MA.Google Scholar
  43. 43.
    Simpson, M. V., and Velick, S. F. (1954) The synthesis of aldolase and glyceraldehyde-3-phosphate dehydrogenase in the rabbit, J. Biol. Chem. 208, 61–71.PubMedGoogle Scholar
  44. 44.
    Heimberg, M., and Velick, S. F. (1954) The synthesis of aldolase and phosphorylase in rabbits, J. Biol. Chem. 208, 725–730.PubMedGoogle Scholar
  45. 45.
    Velick, S. E. (1956) The metabolism of myosin, the meromyosins, actin and tropomyosin in the rabbit, Biochim. Biophys. Acta 20, 228–236.PubMedGoogle Scholar
  46. 46.
    Dice, J. F., and Goldberg, A. L. (1975) A statistical analysis of the relationship between degradative rates and molecular masses of proteins, Arch. Biochem. Biophys. 170, 213–219.PubMedGoogle Scholar
  47. 47.
    Dice, J. F., and Goldberg, A. L. (1975) Relationship between in vivo degradative rates and isoelectric points of proteins, Proc. Natl Acad. Sci. USA 72, 3893–3897.PubMedGoogle Scholar
  48. 48.
    Grisolia, S., Hernadez-Yago, J., and Knecht, E. (1985) Regulation of mitochondria) protein concentration: a plausible model which may permit assessing protein turnover, Curr. Top Cell. Regul. 27, 387–396.PubMedGoogle Scholar
  49. 49.
    Weinberg, M. B., and Utter, M. F. (1979) Effect of thyroid hormone on the turnover of rat liver pyruvate carboxylase and pyruvate dehydrogenase, J. Biol. Chem. 254, 9492–9499.PubMedGoogle Scholar
  50. 50.
    Bohley, P. (1968) Intrazelluläre Proteolyse, Naturwissenschaften 55, 211–217.PubMedGoogle Scholar
  51. 51.
    Schimke, R. T., and Doyle, D. (1970) Control of enzyme levels in animal tissues, Annu. Rev. Biochem. 39, 929–976.PubMedGoogle Scholar
  52. 52.
    Bohley, E, Kirschke, H., Schaper, S., and Wiederanders, B. (1984) Principles of the regulation of intracellular proteolysis, Symp. Biologica Hungarica 25, 101–115.Google Scholar
  53. 53.
    Riis, P. M. (1983) The pools of tissue constituents and products: proteins, in Dynamic biochemistry of animal production ( Rus, P. M., ed.) pp. 75–108, Elsevier, Amsterdam, New York.Google Scholar
  54. 54.
    Piha, R. S., and Waelsch, H. (1964) The turnover of histones in brain and liver, Fed. Proc. 23, 267.Google Scholar
  55. 55.
    Busch, H. (1965) Histones and other nuclear proteins, pp. 171–193, Academic Press, London, New York.Google Scholar
  56. 56.
    Guruprasad, K., Reddy, B. V. B., and Pandit, M. W. (1990) Correlation between the stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability from its primary structure, Protein Eng. 4, 155–161.PubMedGoogle Scholar
  57. 57.
    Perry, S. V. (1961) The biochemistry of muscle, Annu. Rev. Biochem. 30, 473–498.Google Scholar
  58. 58.
    Wikman-Coffelt, J., Zelis, R., Fenner, C., and Mason, D. T. (1973) Studies on the synthesis and degradation of light and heavy chains of cardiac myosin, J. Biol. Chem. 248, 5206–5207.PubMedGoogle Scholar
  59. 59.
    Zak, R., Martin, A. F., Prior, G., and Rabinowitz, M. (1977) Comparison of turnover of several myofibrillar proteins and critical evaluation of double isotope method, J. Biol. Chem. 252, 3430–3435.PubMedGoogle Scholar
  60. 60.
    Koizumi, T. (1974) Turnover rates of structural proteins of rabbit skeletal muscle, J. Biochem. (Tokyo) 76, 431–439.Google Scholar
  61. 61.
    Martin, A. F. (1981) Turnover of cardiac troponin subunits, J. Biol. Chem. 256, 964–968.PubMedGoogle Scholar
  62. 62.
    Cohen, P. (1988) Regulation of phosphorylase kinase activity by calmodulin and troponin in Molecular aspects of cellular regulation, calmodulin (Cohen, P., and Klee, C. B., eds) vol. 5, pp. 123–144, Elsevier Publishers, Amsterdam, New York.Google Scholar
  63. 63.
    Jennissen, H. P., Hoerl, W. H., Gröschel-Stewart, U., Velick, S. F., and Heilmeyer, L. M. G. (1975) Localization and turnover of phosphorylase kinase in rabbit skeletal muscle, in Metabolic interconversion of enzymes 1975 ( Shaltiel, S., ed.) pp. 19–26, Springer-Verlag, Heidelberg.Google Scholar
  64. 64.
    Cohen, P., Burchell, A., Foulkes, J. G., Cohen, P. T. W., Vanaman, T. C., and Nairn, A. C. (1978) Identification of the Ca’-dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase, FEBS Lett. 92, 287–293.PubMedGoogle Scholar
  65. 65.
    Petersen, J. K. H., and Jennissen, H. P. (1979) The subunit turnover of phosphorylase kinase, Hoppe-Seyler’s Z. Physiol. Chem. 360, 340.Google Scholar
  66. 66.
    Jennissen, H. P., and Petersen, J. K. H. (1981) The subunit turnover of phosphorylase kinase: relative turnover rates of the subunits and implications for calmodulin turnover, Hoppe-Seyler’s Z. Physiol. Chem. 362, 212.Google Scholar
  67. 67.
    Petersen-von Gehr, J. K. H., and Jennissen, H. P. (1982) Multisubunit protein turnover: differential turnover of the subunits of phosphorylase kinase and abnormal behavior of the calmodulin subunit, Abstr. Commun. 12th Int. Congr. Biochem., p. 126.Google Scholar
  68. 68.
    Zilversmit, D. B. (1960) The design and analysis of isotope experiments, Am. J. Med. 29, 832–848.PubMedGoogle Scholar
  69. 69.
    Zak, R., Martin, A. F., and Blough, R. (1979) Assessment of protein turnover by use of radioisotopic tracers, Physiol. Rev. 59, 407–447.PubMedGoogle Scholar
  70. 70.
    Cookson, E. J., and Beynon, R. J. (1989) Further evaluation of cofactor as a turnover label for glycogen phosphorylase, Int. J. Biochem. 21, 975–982.PubMedGoogle Scholar
  71. 71.
    Rechsteiner, M., Rogers, S., and Rote, K. (1987) Protein structure and intracellular stability, Trends Biochem. Sci. 12, 390–394.Google Scholar
  72. 72.
    Klose, J. (1989) Systematic analysis of the total proteins of a mammalian organism: Principles, problems and implications for sequencing the human genome, Electrophoresis 10, 140–152.PubMedGoogle Scholar
  73. 73.
    Katunuma, N., Katsunuma, T., Kominami, E, Suzuki, K., Hamaguchi, Y, Chichibu, K., Kobayashi, K., and Shiotani, T. (1973) Regulation of intracellular enzyme levels by group specific pro-teases in various organs, Adv. Enzyme Regul. 11, 37–51.PubMedGoogle Scholar
  74. 74.
    Dice, J. F., Dehlinger, P. J., and Schimke, R. T. (1973) Studies on the correlation between size and relative degradation rate of soluble proteins, J. Biol. Chem. 248, 4220–4228.PubMedGoogle Scholar
  75. 75.
    Segal, H. L., Rothstein, D. M., and Winkler, J. R. (1976) A correlation between turnover rates and lipophilic affinities of soluble rat liver proteins, Biochem. Biophys. Res. Commun. 73, 79–84.PubMedGoogle Scholar
  76. 76.
    Momany, F. A., Aguanno, J. J., and Larrabee, A. R. (1976) Correlation of degradative rates of proteins with a parameter calculated from amino acid composition and subunit size, Proc. Natl Acad. Sci. USA 73, 3093–3097.PubMedGoogle Scholar
  77. 77.
    McLendon, G., and Radany, E. (1978) Is protein turnover thermodynamically controlled? J. Biol. Chem. 253, 6335–6337.PubMedGoogle Scholar
  78. 78.
    Holzer, H. (1981) Initiation of selective proteolysis by metabolic interconversion, Acta Biol. Med. Ger. 40, 1393–1396.PubMedGoogle Scholar
  79. 79.
    Fucci, L., Oliver, C. N., Coon, M. J., and Stadtman, E R. (1983) Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing, Proc. Natl Acad. Sci. USA 80, 1521–1525.PubMedGoogle Scholar
  80. 80.
    Hershko, A., Heller, H., Eytan, E., Kaklij, G., and Rose, I. A. (1984) Role of the a-amino group of protein in ubiquitin-mediated protein breakdown, Proc. Natl Acad. Sci. USA 81, 7021–7025.PubMedGoogle Scholar
  81. 81.
    Bachmair, A, Finley, D., and Varshaysky, A. (1986) In vivo half-life of a protein is a function of its amino-terminal residue, Science 234, 179–186.Google Scholar
  82. 82.
    Murakami, Y., Matsufugi, S., Kameji, T., Hayashi, S. I., Igarashi, K., Tamura, T., Tanaka, K., and Ichihara, A. (1992) Omithine de-carboxylase is degraded by the 26S proteasome without ubiquitination, Nature 360, 597–599.PubMedGoogle Scholar
  83. 83.
    Rogers, S. W., and Rechsteiner, M. (1988) Degradation of structurally characterized proteins injected into HeLa cells: basic measurements, J. Biol. Chem. 263, 19833–19842.PubMedGoogle Scholar
  84. 84.
    Rogers, S. W., and Rechsteiner, M. (1988) Degradation of structurally characterized proteins injected into HeLa cells: Effects of intracellular location and involvement of lysosomes, J. Biol. Chem. 263, 19843–19849.PubMedGoogle Scholar
  85. 85.
    Rogers, S. W., and Rechsteiner, M. (1988) Degradation of structurally characterized proteins injected into Hela cells: Tests of hypotheses, J. Biol. Chem. 263, 19850–19862.PubMedGoogle Scholar
  86. 86.
    Ciechanover, A., Hod, Y., and Hershko, A. (1978) A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes, Biochem. Biophys. Res. Commun. 81, 1100–1105.Google Scholar
  87. 87.
    Rogers, S., Wells, R., and Rechsteiner, M. (1986) Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis, Science 234, 364–368.PubMedGoogle Scholar
  88. 88.
    Wilkinson, K. D., Urban, M. K., and Haas, A. L. (1980) Ubiquitin is the ATP-dependent proteolysis factor of rabbit reticulocytes, J. Biol. Chem. 255, 7529–7532.PubMedGoogle Scholar
  89. 89.
    Ciechanover, A., Heller, H., Elias, S., Haas, A. L., and Hershko, A. (1980) ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation, Proc. Natl Acad. Sci. USA 77, 1365–1368.PubMedGoogle Scholar
  90. 90.
    Haas, A. L., Warms, J. V. B., Hershko, A., and Rose, I. A. (1982) Ubiquitin-activating enzyme, J. Biol. Chem. 257, 2543–2548.PubMedGoogle Scholar
  91. 91.
    Haas, A. L., and Rose, I. A. (1982) The mechanism of ubiquitinactivating enzyme, J. Biol. Chem. 257, 10329–10337.PubMedGoogle Scholar
  92. 92.
    Hershko, A., Heller, H., Elias, S., and Ciechanover, A. (1983) Components of ubiquitin—protein ligase system, J. Biol. Chem. 258, 8206–8214.PubMedGoogle Scholar
  93. 93.
    Hershko, A., Leshinsky, E., Ganoth, D., and Heller, H. (1984) ATP-dependent degradation of ubiquitin-protein conjugates, Proc. Natl Acad. Sci. USA 81, 1619–1623.PubMedGoogle Scholar
  94. 94.
    Hough, R., Pratt, G., and Rechsteiner, M. (1987) Purification of two high-molecular-mass proteases from rabbit reticulocyte lysate, J. Biol. Chem. 262, 8303–8313.PubMedGoogle Scholar
  95. 95.
    Hershko, A., Ciechanover, A., Heller, H., Haas, A. L., and Rose, I. A. (1980) Proposed role of ATP in protein breakdown: conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis, Proc. Natl Acad. Sci. USA 77, 1783–1786.PubMedGoogle Scholar
  96. 96.
    McGrath, J. P., Jentsch, S., and Varshaysky, A. (1991) UBA1: An essential yeast gene encoding ubiquitin-activating enzyme, EMBO J. 10, 227–236.PubMedGoogle Scholar
  97. 97.
    Hatfield, P. M., and Vierstra, R. D. (1989) Ubiquitin-dependent proteolytic pathway in wheat germ: Isolation of multiple forms of ubiquitin-activating enzyme, El, Biochemistry 28, 735–742.Google Scholar
  98. 98.
    Hatfield, P. M., and Vierstra, R. D. (1992) Multiple forms of ubiquitin-activating enzyme El from wheat, J. Biol. Chem. 267, 14 799–14 803.Google Scholar
  99. 99.
    Cook, J. C., and Chock, P. B. (1992) Isoforms of mammalian ubiquitin-activating enzyme, J. Biol. Chem. 267, 24315–24321.PubMedGoogle Scholar
  100. 100.
    Trausch, J. S., Grenfell, S. J., Handley-Gearhart, P. M., Ciechanover, A., and Schwartz, A. L. (1993) Immunofluorescent localization of the ubiquitin-activating enzyme, El, to the nucleus and cytoskeleton, Am. J. Physiol. 264, 93–102.Google Scholar
  101. 101.
    Haas, A., and Bright, P. M. (1988) The resolution and characteriza-tion of putative ubiquitin carrier protein isozymes from rabbit reticulocytes, J. Biol. Chem. 263, 13258–13267.PubMedGoogle Scholar
  102. 102.
    Haas, A. L., Bright, P. M., and Jackson, V. E. (1988) Functional diversity among putative E2 isozymes in the mechanism of ubiquitin-histone ligation, J. Biol. Chem. 263, 13268–13275.PubMedGoogle Scholar
  103. 103.
    Kong, S. K., and Chock, R B. (1992) Protein ubiquitination is regu-lated by phosphorylation. An in vitro study, J. Biol. Chem. 267, 14189–14192.PubMedGoogle Scholar
  104. 104.
    Arnold, J. E., and Gevers, W. (1990) Auto-ubiquitination of ubiqui-tin-activating enzymes from chicken breast muscle, Biochem. J. 267, 751–757.PubMedGoogle Scholar
  105. 105.
    Haas, A., and Bright, R M. (1985) The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates, J. Biol. Chem. 260, 12464–12473.PubMedGoogle Scholar
  106. 106.
    Murti, K. G., Smith, H. T., and Fried, V. A. (1988) Ubiquitin is a component of the microtubule network, Proc. Natl Acad. Sci. USA 85, 3019–3023.PubMedGoogle Scholar
  107. 107.
    Shaw, G., and Chau, V. (1988) Ubiquitin and microtubule-associated protein tau immunoreactivity each define distinct structures with differing distributions and solubility properties in Alzheimer brain, Proc. Natl Acad. Sci. USA 85, 2854–2858.PubMedGoogle Scholar
  108. 108.
    Rapoport, S., Dubiel, W., and Müller, M. (1985) Proteolysis of mito-chondria in reticulocytes during maturation is ubiquitin-depen-dent and is accompanied by a high rate of ATP hydrolysis, FEBS Lett. 180, 249–252.PubMedGoogle Scholar
  109. 109.
    Müller, M., Dubiel, W., Rathmann, J., and Rapoport, S. (1980) Deter-mination and characteristics of energy-dependent proteolysis in rabbit reticulocytes, Eur. J. Biochem. 109, 405–410.PubMedGoogle Scholar
  110. 110.
    Saus, J., Timoneda, J., Hernandez-Yago, J., and Grisolia, S. (1982) Scope of the ATP-ubiquitin system for intracellular protein de-gradation, FEBS Lett. 143, 225–227.PubMedGoogle Scholar
  111. 111.
    Magnani, M., Serafini, G., Antonelli, A., Malatesta, M., and Gazza-nelli, G. (1991) Evidence for a particulate location of ubiquitin conjugates and ubiquitin-conjugating enzymes in rabbit brain, J. Biol. Chem. 266, 21018–21024.PubMedGoogle Scholar
  112. 112.
    Wiebel, F. F., and Kunau, W. H. (1992) The Pas2 protein essential for peroxisome biogenesis is related to ubiquitin-conjugating en-zymes, Nature 359, 73–76.PubMedGoogle Scholar
  113. 113.
    Cook, J. C., and Chock, R. B. (1991) Immunocytochemical localiza-tion of ubiquitin-activating enzyme in the cell nucleus, Biochem. Biophys. Res. Commun. 174, 564–571.PubMedGoogle Scholar
  114. 114.
    Schwartz, A. L., Trausch, J. S., Ciechanover, A., Slot, J. W., and Geuze, H. (1992) Immunoelectron microscopic localization of the ubiquitin-activating enzyme El in HepG2 cells, Proc. Natl Acad. Sci. USA 89, 5542–5546.PubMedGoogle Scholar
  115. 115.
    Nomenclature Committee of the International Union of Biochemis-try and Molecular Biology (1992) Enzyme nomenclature, pp. 5–22, 526–527, Academic Press, New York.Google Scholar
  116. 116.
    Enzyme Database Release no. 16.00, June 1994, EMBL Data Li-brary, Heidelberg, Germany.Google Scholar
  117. 117.
    Soifer, R. L., and Horinishi, H. (1969) Enzymic modification of pro-teins I. General characteristics of the arginine-transfer reaction in rabbit liver cytoplasm, J. Mol. Biol. 43, 163–175.Google Scholar
  118. 118.
    Safer, R. L. (1970) Enzymatic modification of proteins II. Purifi-cation and properties of the arginyl transfer ribonucleic acid-protein transferase from rabbit liver cytoplasm, J. Biol. Chem. 245, 731–737.Google Scholar
  119. 119.
    Soffer, R. L. (1973) Peptide acceptors in the arginine transfer reac-tion, J. Biol. Chem. 248, 2981–2921.Google Scholar
  120. 120.
    Rose, I. A., and Warms, J. V. B. (1983) An enzyme with carboxy-terminal esterase activity from reticulocytes, Biochemistry 22, 4234–4237.PubMedGoogle Scholar
  121. 121.
    Mayer, A. N., and Wilkinson, K. D. (1989) Detection, resolution and nomenclature of multiple ubiquitin carboxyl-terminal esterases from bovine calf thymus, Biochemistry 28, 166–172.PubMedGoogle Scholar
  122. 122.
    Orlowski, M., and Michaud, C. (1989) Pituitary multicatalytic pro-teinase complex. Specificity of components and aspects of pro-teolytic activity, Biochemistry 28, 9270–9278.PubMedGoogle Scholar
  123. 123.
    Matthews, W., Tanaka, K., Driscoll, J., Ichihara, A., and Goldberg, A. L. (1989) Involvement of the proteasome in various degradative processes in mammalian cells, Proc. Natl Acad. Sci. USA 86, 2597–2601.PubMedGoogle Scholar
  124. 124.
    Riven, J. A. (1989) The multicatalytic proteinase of mammalian cells, Arch. Biochem. Biophys. 268, 1–8.Google Scholar
  125. 125.
    Mason, R. W. (1990) Characterization of active site of human multicatalytic proteinase, Biochem. J. 265, 479–484.PubMedGoogle Scholar
  126. 126.
    Tanaka, K., Tamura, T., Kumatori, A., Kwak, T. H., Chung, C. H., and Ichihara, A. (1989) Separation of yeast proteasome subunits. Immunoreactivity with antibodies against ATP-dependent protease Ti from Escherichia coli, Biochem. Biophys. Res. Commun. 164, 1253–1261.PubMedGoogle Scholar
  127. 127.
    Eytan, E., Ganoth, D., Armon, T., and Hershko, A. (1989) ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin, Proc. Natl Acad. Sci. USA 86, 7751–7755.PubMedGoogle Scholar
  128. 128.
    Peters, J.-M., Cejka, Z., Harris, J. R., Kleinschmidt, J. A., and Baumeister, W. (1993) Structural features of the 26S proteasome complex, J. Mol. Biol. 234, 932–937.PubMedGoogle Scholar
  129. 129.
    Ciechanover, A., Elias, S., Heller, H., and Hershko, A. (1982) ‘Covalent affinity’ purification of ubiquitin-activating enzyme, J. Biol. Chem. 257, 2537–2542.Google Scholar
  130. 130.
    Hershko, A., Heller, H., Eytan, E., and Reiss, Y. (1986) The protein substrate binding site of the ubiquitin—protein ligase system, J. Biol. Chem. 261, 11 992–11999.Google Scholar
  131. 131.
    Ziegenhagen, R., and Jennissen, H. P. (1988) Multiple ubiquitination of vertebrate calmodulin by reticulocyte lysate and inhibition of calmodulin conjugation by phosphorylase kinase, Biol. Chem. Hoppe-Seyler 369, 1317–1324.PubMedGoogle Scholar
  132. 132.
    Jennissen, H. P., and Laub, M. (1988) Ubiquitin-calmodulin conjugating activity from cardiac muscle, Biol. Chem. Hoppe-Seyler 369, 1325–1330.PubMedGoogle Scholar
  133. 133.
    Majetschak, M., Laub, M., and Jennissen, H. P. (1993) A ubiquitylcalmodulin synthetase that effectively recognizes the Ca“-free form of calmodulin, FEBS Lett. 315, 347–352.PubMedGoogle Scholar
  134. 134.
    Ziegenhagen, R., Gehrke, R., and Jennissen, H. P. (1988) Covalent conjugation of mammalian calmodulin with ubiquitin, FEBS Lett. 237, 103–107.PubMedGoogle Scholar
  135. 135.
    Nomenclature Committee of the International Union of Biochemistry (1978) Enzyme nomenclature, pp. 6–18, Academic Press, New York.Google Scholar
  136. 136.
    Field, S. J., Pinder, J. C., Clough, B., Dluzewski, A. R., Wilson, R. J., and Gratzer, W. B. (1993) Actin in the merozoite of the malaria parasite, plasmodium falciparum, Cell Motil. Cytoskeleton 25, 43–48.Google Scholar
  137. 137.
    Garcia-Martinez, C., Agell, N., Llovera, M., Lopez-Soriano, F. J., and Argiles, J. M. (1993) Tumor necrosis factor-a increases the ubiquitinization of rat skeletal muscle proteins, FEBS Lett. 323, 211–214.PubMedGoogle Scholar
  138. 138.
    Hershko, A., and Heller, H. (1985) Occurrence of a polyubiquitin structure in ubiquitin-protein conjugates, Biochem. Biophys. Res. Commun. 128, 1079–1086.PubMedGoogle Scholar
  139. 139.
    Chau, V., Tobias, J. W., Bachmair, A., Marriott, D., Ecker, D. J., Gonda, D. K., and Varshaysky, A. (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein, Science 243, 1576–1583.PubMedGoogle Scholar
  140. 140.
    Nickel, B. E., and Davie, J. R. (1989) Structure of polyubiquitinated histone H2A, Biochemistry 28, 964–968.PubMedGoogle Scholar
  141. 141.
    Nickel, B. E., Roth, S. Y., Cook, R. G., Allis, C. D., and Davie, J. R. (1987) Changes in the histone H2A variant H2A.Z and polyubiquitinated histone species in-developing trout testis, Biochemistry 26, 4417–4421.Google Scholar
  142. 142.
    Hadari,.T., Warms, J. V. B., Rose, I. A., and Hershko, A. (1992) A ubiquitin C-terminal isopeptidase that acts on polyubiquitin chains (role in protein degradation) J. Biol. Chem. 267, 719–727.Google Scholar
  143. 143.
    Ziegenhagen, R., Goldberg, M., Rakutt, W. D., and Jennissen, H. P. (1990) Multiple ubiquitination of calmodulin results in one polyubiquitin chain linked to calmodulin, FEBS Lett. 271, 71–75.PubMedGoogle Scholar
  144. 144.
    Ziegenhagen, R., and Jennissen, H. R. (1990) Plant and fungus calmodulins are polyubiquitinated at a single site in a Ca“-dependent manner, FEBS Lett. 273, 253–256.PubMedGoogle Scholar
  145. 145.
    van Nocker, S., and Vierstra, R. D. (1993) Multiubiquitin chains linked through lysine 48 are abundant in vivo and are competent intermediates in the ubiquitin proteolytic pathway, J. Biol. Chem. 268, 24766–24773.PubMedGoogle Scholar
  146. 146.
    Cook, W. J., Jeffrey, L. C., Kasperek, E., and Pickart, C. M. (1994) Structure of tetraubiquitin shows how multiubiquitin chains can be formed, J. Mol. Biol. 236, 600–609.Google Scholar
  147. 147.
    Haas, A., Reback, P. M., Pratt, G., and Rechsteiner, M. (1990) Ubiquitin-mediated degradation of histone H3 does not require the substrate-binding ubiquitin protein ligase, E3, or attachment of polyubiquitin chains, J. Biol. Chem. 265, 21664–21669.PubMedGoogle Scholar
  148. 148.
    Haas, A. L., Reback, P. B., and Chau, V. (1991) Ubiquitin conjugation by the yeast RAD6 and CDC34 gene products: comparison to their putative rabbit homologs, J. Biol. Chem. 266, 5104–5112.PubMedGoogle Scholar
  149. 149.
    Özkaynak, E., Finley, D., and Varshaysky, A. (1984) The yeast ubiquitin gene: Head-to tail repeats encoding a polyubiquitin precursor protein, Nature 312, 663–666.PubMedGoogle Scholar
  150. 151.
    Bamezai, S., Tate, S., and Breslow, E. (1989) Inhibition of ubiquitindependent proteolysis by des-gly-gly-ubiquitin: Implications for the mechanism of polyubiquitin synthesis, Biochem. Biophys. Res. Commun. 162, 89–94.PubMedGoogle Scholar
  151. 152.
    Pickart, C. M., and Vella, A. T. (1988) Levels of active ubiquitin carrier proteins decline during erythroid maturation, J. Biol. Chem. 263, 12028–12035.PubMedGoogle Scholar
  152. 153.
    Haas, A. L., and Bright, P. M. (1988) The resolution and characterization of putative ubiquitin carrier protein isozymes from rabbit reticulocytes, J. Biol. Chem. 263, 13258–13267.PubMedGoogle Scholar
  153. 154.
    Pickart, C. M., and Rose, I. A. (1985) Functional heterogeneity of ubiquitin carrier proteins, J. Biol. Chem. 260, 1573–1581.PubMedGoogle Scholar
  154. 155.
    West, M. H. P., and Bonner, W. M. (1980) Histone 2A, a heteromorphous family of eight protein species, Biochemistry 19, 3238–3245.PubMedGoogle Scholar
  155. 156.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680–685.PubMedGoogle Scholar
  156. 157.
    Ciechanover, A., Elias, S., Heller, H., Ferber, S., and Hershko, A. (1980) Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes, J. Biol. Chem. 255, 7525–7528.PubMedGoogle Scholar
  157. 158.
    Hunter, W. M., and Greenwood, F. C. (1962) Preparation of Iodine-131 labelled human growth hormone of high specific activity, Nature 194, 495–496.PubMedGoogle Scholar
  158. 159.
    Chafouleas, J. G., Dedman, J. R., Munjaal, R. P., and Means, A. R. (1979) Calmodulin: Development and application of a sensitive radioimmunoassay, J. Biol. Chem. 254, 10262–10267.PubMedGoogle Scholar
  159. 160.
    Thiry, P., Vandermeers, A., Vandermeers-Piret, M. C., Rathe, J., and Christophe, J. (1980) The activation of brain adenylate cyclase and brain cyclic-nucleotide phosphodiesterase by seven calmodulin derivatives, Eur. J. Biochem. 103, 409–414.Google Scholar
  160. 161.
    Bamezai, S., Banez, M. A. T., and Breslow, E. (1990) Structural and functional changes associated with modification of the ubiquitin methionine, Biochemistry 29, 5389–5396.PubMedGoogle Scholar
  161. 162.
    Cox, M. J., Haas, A. L., and Wilkinson, K. D. (1986) Role of ubiqui-tin conformations in the specificity of protein degradation: Iodinated derivatives with altered conformations and activities, Arch. Biochem. Biophys. 250, 400–409.PubMedGoogle Scholar
  162. 163.
    Bolton, A. E., and Hunter, W. M. (1973) The labelling of proteins to high specific radioactivities by conjugation to a ‘uI-containing acylating agent, Biochem. J. 133, 529–539.PubMedGoogle Scholar
  163. 164.
    Pickart, C. M., Haldeman, M. T., Kasperek, E. M., and Chen, Z. (1992) Iodination of tyrosine 59 of ubiquitin selectively blocks ubiquitin’s acceptor activity in diubiquitin synthesis catalyzed by E2 25K, J. Biol. Chem. 267, 14418–14423.PubMedGoogle Scholar
  164. 165.
    Rapoport, S., Schmidt, J., and Prehn, S. (1985) Maturation of rabbit reticulocytes: susceptibility of mitochondria to ATP-dependent proteolysis is determined by the maturational state of reticulocyte, FEBS Lett. 183, 370–374.Google Scholar
  165. 166.
    Reiss, Y., and Hershko, A. (1990) Affinity purification of ubiquitinprotein ligase on immobilized protein substrates, J. Biol. Chem. 265, 3685–3690.PubMedGoogle Scholar
  166. 167.
    Lee, P. L., Midelfort, C. F., Murakami, K., and Hatcher, V. B. (1986) Multiple forms of ubiquitin—protein ligase. Binding of activated ubiquitin to protein substrates, Biochemistry 25, 3134–3138.PubMedGoogle Scholar
  167. 168.
    Reiss, Y., Kaim, D., and Hershko, A. (1988) Specificity of binding of NIL -terminal residue of proteins to ubiquitin—protein ligase, J. Biol. Chem. 263, 2693–2698.PubMedGoogle Scholar
  168. 169.
    Heller, H., and Hershko, A. (1990) A ubiquitin—protein ligase specific for type III protein substrates, J. Biol. Chem. 265, 6532–6535.PubMedGoogle Scholar
  169. 170.
    Reiss, Y., Heller, H., and Hershko, A. (1989) Binding sites of ubiquitin—protein ligase, J. Biol. Chem. 264, 10378–10383.PubMedGoogle Scholar
  170. 171.
    Takizawa, N., Takada, K, and Ohkawa, K. (1993) Inhibitory effect of nonenzymatic glycation on ubiquitination, and ubiquitin-mediated degradation of lysozyme, Biochem. Biophys. Res. Commun. 192, 700–706.PubMedGoogle Scholar
  171. 172.
    Hershko, A., Ganoth, D., Pehrson, J., Palazzo, R. E., and Cohen, L. H. (1991) Methylated ubiquitin inhibits cyclin degradation in clam embryo extracts, J. Biol. Chem. 266, 16376–16379.PubMedGoogle Scholar
  172. 173.
    Deveraux, Q., Ustrell, V., Pickart, C., and Rechsteiner, M. (1994) A 26S protease subunit that binds ubiquitin conjugates, J. Biol. Chem. 269, 7059–7061.PubMedGoogle Scholar
  173. 174.
    Sharon, G., Raboy, B., Parag, H. A., Dimitrovsky, D., and Kulka, R. G. (1991) RAD6 gene product of saccharomyces cerevisiae requires a putative ubiqutin protein ligase (E3) for the ubiquitination of certain proteins, J. Biol. Chem. 266, 15890–15894.PubMedGoogle Scholar
  174. 175.
    Ferber, S., and Ciechanover, A. (1986) Transfer RNA is required for conjugation of ubiquitin to selective substrates of the ubiquitinand ATP-dependent proteolytic system, J. Biol. Chem. 261, 3128–3134.PubMedGoogle Scholar
  175. 176.
    Ciechanover, A., DiGiuseppe, J. A., Bercovich, B., Orian, A., Richter, J. D., Schwartz, A. L., and Brodeur, G. M. (1991) Degradation of nuclear oncoproteins by the ubiquitin system in vitro, Proc. Natl Acad. Sci. USA 88, 139–143.PubMedGoogle Scholar
  176. 177.
    Sokolik, C. W., and Cohen, R. E. (1992) Ubiquitin conjugation of cytochromes c, J. Biol. Chem. 267, 1067–1071.PubMedGoogle Scholar
  177. 178.
    Chin, D. T., Kuehl, L., and Rechsteiner, M. (1982) Conjugation of ubiquitin to denatured hemoglobin is proportional to the rate of hemoglobin degradation in HeLa cells, Proc. Natl Acad. Sci. USA 79, 5857–5861.PubMedGoogle Scholar
  178. 179.
    Fagan, J. M., Waxman, L., and Goldberg, A. L. (1986) Red blood cells contain a pathway for the degradation of oxidant-damaged hemoglobin that does not require ATP or ubiquitin, J. Biol. Chem. 261, 5705–5713.PubMedGoogle Scholar
  179. 180.
    Eytan, E., Armon, T., Heller, H., Beck, S., and Hershko, A. (1993) Ubiquitin C-terminal hydrolase activity associated with the 26S protease complex, J. Biol. Chem. 268, 4668–4674.PubMedGoogle Scholar
  180. 181.
    Carlson, N., and Rechsteiner, M. (1987) Microinjection of ubiquitin: Intracellular distribution and metabolism in HeLa cells maintained under normal physiological conditions, J. Cell Biol. 104, 537–546.PubMedGoogle Scholar
  181. 182.
    Wu, R. S., Kohn, K. W., and Bonner, W. M. (1981) Metabolism of ubiquitinated histones, J. Biol. Chem. 256, 5916–5920.PubMedGoogle Scholar
  182. 183.
    Beeken, W. L., and Imredy, K. (1962) Catabolism of rat serum albumin in vitro by mitochondrial, preparations of rat liver — pH effect, Biochim. Biophys. Acta 62, 579–581.Google Scholar
  183. 184.
    Hershko, A., Ciechanover, A., and Rose, I. A. (1979) Resolution of the ATP-dependent proteolytic Systeme from reticulocytes: A component that interacts with ATP, Proc. Natl Acad. Sci. USA 76, 3107–3110.PubMedGoogle Scholar
  184. 185.
    Wilkinson, K. D., and Audhya, T. K. (1981) Stimulation of ATP-dependent proteolysis requires ubiquitin with the COOH-terminal sequence Arg-Gly-Gly, J. Biol. Chem. 256, 9235–9241.PubMedGoogle Scholar
  185. 186.
    Evans, A. C., and Wilkinson, K. D. (1985) Ubiquitin-dependent proteolysis of native and alkylated bovine serum albumin: Effects of protein structure and ATP concentration on selectivity, Biochemistry 24, 2915–2923.PubMedGoogle Scholar
  186. 187.
    Breslow, E., Daniel, R., Ohba, R., and Tate, S. (1986) Inhibition of ubiquitin-dependent proteolysis by non-ubiquitinatable proteins, J. Biol. Chem. 261, 6530–6535.PubMedGoogle Scholar
  187. 188.
    Gehrke, P. P., and Jennissen, H. P. (1987) ATP-dependent proteolysis and the role of ubiquitin in rabbit cardiac muscle, Biol. Chem. Hoppe-Seyler 368, 691–708.PubMedGoogle Scholar
  188. 189.
    Ferber, S., and Ciechanover, A. (1987) Role of arginine-tRNA in protein degradation, by the ubiquitin pathway, Nature 326, 808–811.PubMedGoogle Scholar
  189. 190.
    Elias, S., and Ciechanover, A. (1990) Post-translational addition of an arginine moiety to acidic NH2 termini of proteins is required for their recognition by ubiquitin—protein ligase, J. Biol. Chem. 265, 15511–15517.PubMedGoogle Scholar
  190. 191.
    Safer, R. L. (1973) Post-translational modification of proteins cat-alyzed by aminoacyl-tRNA-protein transferases, Mol. Cell. Bio-chem. 2, 3–14.Google Scholar
  191. 192.
    Yu, M., Charkraborty, G., Grabow, M., and Ingolia, N. A. (1994) Serine protease inhibitors block N-terminal arginylation of pro-teins by inhibiting the arginylation of tRNA in rat brains, Neu-rochem. Res. 19, 105–110.Google Scholar
  192. 193.
    Gonda, D. K., Bachmair, A., Wunning, I., Tobias, J. W., Lande, W. S., and Varshaysky, A. (1989) Universality and structure of the N- end rule, J. Biol. Chem. 264, 16700–16712.PubMedGoogle Scholar
  193. 194.
    Robinson, A. B., McKerrow, J. H., and Cary, P. (1970) Controlled deamidation of peptides and proteins: an experimental hazard and a possible biological timer, Proc. Natl Acad. Sci. USA 66, 753–757.PubMedGoogle Scholar
  194. 195.
    Robinson, A. B. (1974) Evolution and distribution of glutaminyl and asparaginyl residues in proteins, Proc. Natl Acad. Sci. USA 71, 885–888.PubMedGoogle Scholar
  195. 196.
    Sun, Q.-Q., Yueksel, K., and Gracy, W. (1992) Relationship between the catalytic center and the primary degradation site of triosephosphate isomerase: Effects of active site modification and deamidation, Arch. Biochem. Biophys. 293, 382–390.PubMedGoogle Scholar
  196. 197.
    Chau, V., Tobias, J. W., Bachmair, A., Marriott, D., Ecker, D. J., Gonda, D. K., and Varshaysky, A. (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein, Science 243, 1576–1583.PubMedGoogle Scholar
  197. 198.
    Johnson, E. S., Gonda, D. K., and Varshaysky, A. (1990) Cis-trans recognition and subunit-specific degradation of short-lived pro-teins, Nature 346, 287–291.PubMedGoogle Scholar
  198. 199.
    Bachmair, A., and Varshaysky, A. (1989) The degradation signal in a short-lived protein, Cell 56, 1019–1032.PubMedGoogle Scholar
  199. 200.
    Bartel, B., Wunning, I., and Varshaysky, A. (1990) The recognition component of the N-end rule pathway, EMBO J. 9, 3179–3189.PubMedGoogle Scholar
  200. 201.
    Sung, P., Berleth, E., Pickart, C., Prakash, S., and Prakash, L. (1991) Yeast RAD6 encoded ubiquitin-conjugating enzyme mediates protein degradation dependent on the N-end recognizing E3 en-zyme, EMBO J. 10, 2187–2193.PubMedGoogle Scholar
  201. 202.
    Dohmen, R. J., Madura, K., Bartel, B., and Varshaysky, A. (1991) The N-end rule is mediated by the UBC2 (RAD6) ubiquitin-conjugating enzyme, Proc. Natl Acad. Sci. USA 88, 7351–7355.PubMedGoogle Scholar
  202. 203.
    Etlinger, J. D., and Goldberg, A. L. (1977) A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes, Proc. Natl Acad. Sci. USA 74, 54–58.PubMedGoogle Scholar
  203. 204.
    Hershko, A., Eytan, E., Ciechanover, A., and Haas, A. L. (1982) Immunochenúcal analysis of the turnover of ubiquitin-protein conjugates in intact cells, J. Biol. Chem. 257, 13964–13970.PubMedGoogle Scholar
  204. 205.
    Seufert, W., and Jentsch, S. (1990) Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins, EMBO J. 9, 543–550.PubMedGoogle Scholar
  205. 206.
    Ciechanover, A., Finley, D., and Varshaysky, A. (1984) Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85, Cell 37, 57–66.PubMedGoogle Scholar
  206. 207.
    Morishima-Kawashima, M., Hasegawa, M., Takio, K., Suzuki, M., Titani, K., and Mara, Y. (1993) Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments, Neu-ron 10, 1151–1160.Google Scholar
  207. 208.
    Mesco, E. R., and Timiras, P. S. (1991) Tau-ubiquitin protein conju-gates in a human cell line, Mech. Ageing Dev 61, 1–9.PubMedGoogle Scholar
  208. 209.
    Mayer, A., Siegel, N. R., Schwartz, A. L., and Ciechanover, A. (1989) Degradation of proteins with acetylated amino termini by the ubiquitin system, Science 244, 1480–1483.PubMedGoogle Scholar
  209. 210.
    Etlinger, J. D., Speiser, S., Wajnberg, E., and Glucksman, M. J. (1981) ATP-dependent proteolysis in erythroid and muscle cells, Acta Biol. Med. Ger. 40, 1285–1291.PubMedGoogle Scholar
  210. 211.
    Han, K.-K., and Martinage, A. (1992) Post-translational chemical modification(s) of proteins, Int. J. Biochem. 24, 19–28.PubMedGoogle Scholar
  211. 212.
    Boches, F. S., and Goldberg, A. L. (1982) Role for the adenosine triphosphate-dependent proteolytic pathway in reticulocyte mat-uration, Science 215, 978–980.PubMedGoogle Scholar
  212. 213.
    Rapoport, S., and Dubiel, W. (1984) The effect of phenylhydrazine on protein breakdown in rabbit reticulocytes, Biomed. Biochim. Acta 43, 23–27.PubMedGoogle Scholar
  213. 214.
    Parag, H. A., Raboy, B., and Kulka, R. G. (1987) Effect of heat shock on protein degradation in mammalian cells: Involvement of the ubiquitin system, EMBO J. 6, 55–61.PubMedGoogle Scholar
  214. 215.
    Seufert, W., McGrath, J. P., and Jentsch, S. (1990) UBC1 encodes a novel member of an essential subfamily of yeast ubiquitinconjugating enzymes involved in protein degradation, EMBO J. 9, 4535–4541.PubMedGoogle Scholar
  215. 216.
    Gropper, R., Brandt, A., Elias, S., Bearer, C. F., Mayer, A., Schwartz, A. L., and Ciechanover, A. (1991) The Ubiquitin-activating enzyme, El, is required for stress-induced lysosomal degradation of cellular proteins, J. Biol. Chem. 266, 3602–3610.PubMedGoogle Scholar
  216. 217.
    Shanklin, J., Jabben, M., and Vierstra, R. D. (1987) Red light-induced formation of ubiquitin-phytochrome conjugates: identification of possible intermediates of phytochrome degradation, Proc. Natl Acad. Sci. USA 84, 359–363.PubMedGoogle Scholar
  217. 218.
    Jabben, M., Shanklin, J., and Vierstra, R. D. (1989) Ubiquitin-phytochrome conjugates, J. Biol. Chem. 264, 4998–5005.PubMedGoogle Scholar
  218. 219.
    Shanklin, J, Jabben, M., and Vierstra, R. D. (1989) Partial purification and peptide mapping of, ubiquitin-phytochrome conjugates from oat, Biochemistry 28, 6028–6034.Google Scholar
  219. 220.
    Luca, F. C., and Ruderman, J. V. (1989) Control of programmed cyclin destruction in a cell-free system, J. Cell Biol. 109, 1895–1909.PubMedGoogle Scholar
  220. 221.
    Draetta, G., Luca, F., Westendorf, J., Brizuela, L., Ruderman, J., and Beach, D. (1989) Cdc2 protein kinase is complexed with both cyclin A and B: Evidence for proteolytic inactivation of MPF, Cell 56, 829–838.PubMedGoogle Scholar
  221. 222.
    Hershko, A., Ganoth, D., Sudakin, V., Dahan, A., Cohen, L. H., Luca, F. C., Ruderman, J. V., and Eytan, E. (1994) Components of a system that ligates cyclin to ubiquitin and their regulation by the protein kinase cdc2, J. Biol. Chem. 269, 4940–4946.PubMedGoogle Scholar
  222. 223.
    Glotzer, M., Murray, W., and Kirschner, M. W. (1991) Cycin is de- graded by the ubiquitin pathway, Nature 349, 132–138.PubMedGoogle Scholar
  223. 224.
    Scheffner, M., Werness, B. A., Huibregtse, J. M., and Levine, A. J. (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53, Cell 63, 1129–1136.PubMedGoogle Scholar
  224. 225.
    Huibregtse, J. M., Scheffner, M., and Howley, P. M. (1991) A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18, EMBO J. 10, 4129–4135.PubMedGoogle Scholar
  225. 226.
    Johnston, N. L., and Cohen, R. E. (1991) Uncoupling ubiquitin-protein conjugation from ubiquitin-dependent proteolysis by use of)3, y-nonhydrolyzable ATP analogues, Biochemistry 30, 7514–7522.PubMedGoogle Scholar
  226. 227.
    Scheffner, M., Huibregtse, J. M., Vierstra, R. D., and Howley, P. M. (1993) The HPV-16E6 and E6-AP complex functions as a ubiquitin—protein ligase in the ubiquitination of p53, Cell 75, 495–505.PubMedGoogle Scholar
  227. 228.
    Ciechanover, A., Shkedy, D., Oren, M., and Bercovich, B. (1994) Degradation of the tumor suppresssssor protein p53 by the ubiquitin-mediated proteolytic system requires a novel species of ubiqutin-carrier protein, E2, J. Biol. Chem. 269, 9582–9589.PubMedGoogle Scholar
  228. 229.
    Chowdary, D. R., Dermody, J. J., Jha, K. K., and Ozer, H. L. (1994) Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway, Mol. Cell Biol. 14, 1997–2003.PubMedGoogle Scholar
  229. 230.
    Hochstrasser, M., Ellison, M. J., Chauu, V., and Varshaysky, A. (1991) The short-lived MATa2 transcriptional regulator is ubiquitinated in vivo, Proc. Natl Acad. Sci. USA 88, 4606–4610.Google Scholar
  230. 231.
    Chem, P., Johnson, P., Sommer, T., Jentsch, S., and Hochstrasser, M. (1993) Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MAT a2 repressor, Cell 74, 357–369.Google Scholar
  231. 232.
    Nishizawa, M., Okazaki, K., Furono, N., Watanabe, N., and Sagata, N. (1992) The `second codon rule’ and autophosphorylation govern the stability and activity of MOS during meiotic cell cycle in Xenopus oocytes, EMBO J. 11, 2433–2446.PubMedGoogle Scholar
  232. 233.
    Deveraux, Q., Wells, R., and Rechsteiner, M. (1990) Ubiquitin metabolism in ts85 cells, a mouse carcinoma line that contains a thermolabile ubiquitin-activating enzyme, J. Biol. Chem. 265, 6323–6329.PubMedGoogle Scholar
  233. 234.
    Gregori, L., Marriott, D., West, C. M., and Chau, V. (1985) Specific recognition of calmodulin from Dictyostelium discoideum by the ATP, ubiquitin-dependent degradative pathway, J. Biol. Chem. 260, 5232–5235.PubMedGoogle Scholar
  234. 235.
    Gregori, L., Marriott, D., Putkey, J. A., Means, A. R., and Chau, V. (1987) Bacterially synthesized vertebrate calmodulin is a specific substrate for ubiquitination, J. Biol. Chem. 262, 2562–2567.PubMedGoogle Scholar
  235. 236.
    Gehrke, P. P., Ziegenhagen, R., and Jennissen, H. P. (1987) Isolation of ubiquitin-conjugating activity from cardiac muscle by affinity chromatography on ubiquitin-agarose, Biol. Chem. Hoppe-Seyler 368, 744.Google Scholar
  236. 237.
    Laub, M., and Jennissen, H. P. (1993) Evidence for a novel isopeptidase (uCaM-isopeptidase) and for a reversible covalent modification of calmodulin with ubiquitin, Biol. Chem. Hoppe-Seyler 374, 774.Google Scholar
  237. 238.
    Magnani, M., Stocchi, V., Chiarantini, L., Serfini, G., Dacha, M., and Fornaini, G. (1986) Rabbit red blood cell hexokinase. Decay mechanism during reticulocyte maturation, J. Biol. Chem. 261, 8327–8333.PubMedGoogle Scholar
  238. 239.
    Thorburn, D. R., and Beutler, E. (1989) Decay of hexokinase during reticulocyte maturation: Is oxidative damage a signal for destruction? Biochem. Biophys. Res. Commun. 162, 612–618.PubMedGoogle Scholar
  239. 240.
    Böhm, H., Petersen-Von Gehr, J. K. H., Neubauer, H. R, Mehnert, F. E., and Jennissen, H. R. (1984) Generation, characterization and ELISA of monospecific antibodies against the subunits of a Cat `-dependent proteinkinase and a Ca“-transport ATPase from rabbit skeletal muscle, J. Immunol. Methods 70, 193–209.PubMedGoogle Scholar
  240. 241.
    Jennissen, H. P., and Botzet, G. (1993) The binding of phosphorylase kinase to immobilized calmodulin, J. Mol. Recogn. 6, 117–130.Google Scholar
  241. 242.
    Gehrke, P. P. (1987) Untersuchung zur ATP-abhängigen Proteolyse and zur Rolle des Ubiquitins in Herzmuskulatur im Vergleich zur ATP- and Ubiquitin-abhängigen Protease in Retikulozyten, Dissertation, Ruhr-Universität Bochum, Abteilung für Biologic.Google Scholar
  242. 243.
    Hegde, A. N., Goldberg, A. L., and Schwartz, J. H. (1993) Regulatory subunits of cAMP-dependent protein kinases are degraded after conjugation to ubiquitin: A molecular mechanism underlying long-term synaptic plasticity, Proc. Natl Acad. Sci. USA 90, 7436–7440.PubMedGoogle Scholar
  243. 244.
    Alhanaty, E., Tauber-Finkelstein, M., Schmeeda, H., and Shaltiel, S. (1985) cAMP-triggered proteolysis of cAMP-dependent protein kinase in brush border membranes, Curt. Top Cell Regu1. 27, 267–278.Google Scholar
  244. 245.
    Blumenfeld, N., Gonen, H., Mayer, A., Smith, C. E., Siegel, N. R., Schwartz, A. L., and Ciechanover, A. (1994) Purification and characterization of a novel species of ubiquitin-carrier protein, E2, that is involved in degradation of non-`N-end rule’ protein substrates, J. Biol. Chem. 269, 9574–9581.PubMedGoogle Scholar
  245. 246.
    Finley, D., Ciechanover, A., and Varshaysky, A. (1984) Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85, Cell 37, 43–55.PubMedGoogle Scholar
  246. 247.
    Krebs, E. G., and Beavo, J. A. (1979) Phosphorylation-dephosphorylation of enzymes, Annu. Rev. Biochem. 48, 923–959.PubMedGoogle Scholar
  247. 248.
    Rakutt, W.-D., and Jennissen, H. P. (1992) Differentiation of the ATP-dependent protease proteokinain from other high molecular weight cytosolic proteases in cardiac muscle, Biol. Chem. Hoppe-Seyler 373, 813.Google Scholar
  248. 249.
    Haas, A. L., Murphy, K. E., and Bright, P. M. (1985) The inactivation of ubiquitin accounts for the inability to demonstrate ATP, ubiquitin-dependent proteolysis in liver extracts, J. Biol. Chem. 260, 4694–4703.PubMedGoogle Scholar
  249. 250.
    Laub, M., and Jennissen, H. P. (1989) Tissue distribution of ubiquitylcalmodulin synthetase and proteokinain in rabbit, Biol. Chem. Hoppe-Seyler 370, 926–927.Google Scholar
  250. 251.
    Katznelson, R., and Kulka, R. G. (1983) Degradation of microinjected methylated and unmethylated proteins in hepatoma tissue culture cells, J. Biol. Chem. 258, 9597–9600.PubMedGoogle Scholar
  251. 252.
    Speiser, S., and Etlinger, J. D. (1982) Loss of ATP-dependent proteolysis with maturation of reticulocytes and erythrocytes, J. Biol. Chem. 257, 14122–14127.PubMedGoogle Scholar
  252. 253.
    Raviv, O., Heller, H., and Hershko, A. (1987) Alterations in components of the ubiquitin—protein ligase system following maturation of reticulocytes to erythrocytes, Biochem. Biophys. Res. Commun. 145, 658–665.PubMedGoogle Scholar
  253. 254.
    Rote, K., Rogers, S., Pratt, G., and Rechsteiner, M. (1989) Degradation of structurally characterized proteins injected into HeLa cells: Comparison with their stability in rabbit reticulocyte lysate, J. Biol. Chem. 264, 9772–9779.PubMedGoogle Scholar
  254. 255.
    Fagan, J. M., Waxman, L., and Goldberg, A. L. (1987) Skeletal muscle and liver contain a soluble ATP + ubiquitin-dependent proteolytic system, Biochem. J. 243, 335–343.PubMedGoogle Scholar
  255. 256.
    Driscoll, J., and Goldberg, A. L. (1989) Skeletal muscle proteasome can degrade proteins in an ATP-dependent process that does not require ubiquitin, Proc. Natl Acad. Sci. USA 86, 787–791.PubMedGoogle Scholar
  256. 257.
    Laub, M., and Jennissen, H. P. (1991) Ubiquitination of endogenous calmodulin in rabbit tissues, FEBS Lett. 294, 229–233.PubMedGoogle Scholar
  257. 258.
    Beers, E. P., Moreno, T. N., and Callis, J. (1992) Subcellular localization of ubiquitin and ubiquitinated proteins in Arabidopsis thaliana, J. Biol. Chem. 267, 15432–15439.Google Scholar
  258. 259.
    Laub, M., and Jennissen, H. R. (1992) Cat+-dependent ubiquitination of a calmodulin fragment, Biol. Chem. Hoppe-Seyler 373, 792–793.Google Scholar
  259. 260.
    Jennissen, H. R, Botzet, G., Majetschak, M., Laub, M., Ziegenhagen, R., and Demiroglou, A. (1992) Ca“-dependent ubiquitination of calmodulin in yeast, FEBS Leu. 296, 51–56.Google Scholar
  260. 261.
    Parag, H. A., Dimitrovsky, D., Raboy, B., and Kulka, R. G. (1993) Selective ubiquitination of cahnodulin by UBC4 and a putative ubiquitin protein ligase (E3) from Saccharomyces cerevisiae, FEBS Lett. 325, 242–246.Google Scholar
  261. 262.
    Jennissen, H. P., and Demirolgou, A. (1992) Base-atom recognition in protein adsorption to alkyl agaroses, J. Chromatogr. 597, 93–100.PubMedGoogle Scholar
  262. 263.
    Babu, Y. S., Sack, J. S., Greenhough, T. J., Bugg, C. E., Means, A. R., and Cook, W. J. (1985) Three-dimensional structure of calmodulin, Nature 315, 37–40.PubMedGoogle Scholar
  263. 264.
    Vijay-Kumar, S., Bugg, C. E., Wilkinson, K. D., and Cook, W. J. (1985) Three-dimensional structure of ubiquitin at 2.8 A resolution, Proc. Natl Acad. Sci. USA 82, 3582–3585.PubMedGoogle Scholar
  264. 265.
    Dixon, M., and Webb, E. C. (1979) Enzymes, 3rd edn, p. 5, Long-mans, London.Google Scholar
  265. 266.
    Majetschak, M., Laub, M., and Jennissen, H. R. (1992) Ca’-’-sensitivity is bestowed to ubiquityl calmodulin synthetase by a novel Ca“-dependent calmodulin binding protein, Biol. Chem. HoppeSeyler 373, 797–798.Google Scholar
  266. 267.
    Majetschak, M., Laub, M., and Jennissen, H. P. (1993) Components of the ubiquitinating system of calmodulin: Further characterization of the calmodulin binding protein, Biol. Chem. HoppeSeyler 374, 710–711.Google Scholar
  267. 268.
    Laub, M., and Jennissen, H. R. (1994) Ubiquitylation of calmodulin is reversed by the novel enzyme ubiquityl-calmodulin isopeptidase, Biol. Chem. Hoppe-Seyler 375 (Suppl.), S69.Google Scholar
  268. 269.
    Heilmeyer, L. M. G. Jr, Gerschinski, A. M., Meyer, H. E., and Jennissen, H. P. (1993) Interaction sites on phosphorylase kinase for calmodulin, Mol. Cell. Biochem. 127/128, 19–30.Google Scholar
  269. 270.
    Hunt, L. T., and Dayhoff, M. O. (1977) Aminoterminal sequence identity of ubiquitin and the nonhistone component of nuclear protein A24, Biochem. Biophys. Res. Commun. 74, 650–655.PubMedGoogle Scholar
  270. 271.
    Goldknopf, I. L., Taylor, C. W., Baum, R. M., Yoeman, L. C., Olson, L. C., Prestyko, A. W., and Busch, H. (1975) Isolation and characterization of protein A24, a `histone-like’ non-histone chromosomal protein, J. Biol. Chem. 250, 7182–7187.PubMedGoogle Scholar
  271. 272.
    Goldknopf, I. L., and Busch, H. (1977) Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24, Proc. Natl Acad. Sci. USA 74, 864–868.PubMedGoogle Scholar
  272. 273.
    West, M. H., and Bonner, W. M. (1980) Histone 2B can be modified by the attachment of ubiquitin, Nucleic Acids Res. 8, 4671–4680.PubMedGoogle Scholar
  273. 274.
    Thorne, A. W., Sautiere, P., Briand, G., and Crane-Robinson, C. (1987) The structure of ubiquitinated histone H2B, EMBO J. 6, 1005–1010.PubMedGoogle Scholar
  274. 275.
    Seale, R. L. (1981) Rapid turnover of the histone-ubiquitin conjugate, Protein A24, Nucleic Acids Res. 9, 3151–3158.PubMedGoogle Scholar
  275. 276.
    Matsumoto, Y., Yasuda, H., Marunochi, T., and Yamada, M. (1983) Decrease in uH2A (protein A24) of a mouse temperature-sensitive mutant, FEBS Leu. 151, 139–142.Google Scholar
  276. 277.
    Andersen, M. W., Ballai, N. R., Goldknopf, I. L., and Busch, H. (1981) Protein A24 lyase activity in nucleoli of thioacetamidetreated rat liver releases histone 2A and ubiquitin from conjugated protein A24, Biochemistry 20, 1100–1104.PubMedGoogle Scholar
  277. 278.
    Kanda, F., Sykes, D. E., Yasuda, H., Sandberg, A. A., and Matsui, S.-I. (1986) Substrate recognition, of isopeptidase: Specific cleavage of the E-(a-glycyl)lysine linkage in ubiquitin-protein conjugates, Biochim. Biophys. Acta 870, 64–75.PubMedGoogle Scholar
  278. 279.
    Pickart, C. M., and Vella, A. T. (1988) Ubiquitin carrier protein-catalyzed ubiquitin transfer to histones, J. Biol. Chem. 263, 300. 15 076–15 082.Google Scholar
  279. 280.
    Davie, J. R., and Murphy, L. C. (1990) Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription, Biochemistry 29, 4752–4757. 301.Google Scholar
  280. 281.
    Elia, M. C., and Moudrianakis, E. N. (1988) Regulation of H2Aspecific proteolysis by the histone H3: H4 tetramer, J. Biol. Chem. 263, 9958–9964.Google Scholar
  281. 282.
    Bullard, B., Bell, J., and Leonard, K. (1985) Arthrin: A new actin-like protein in insect flight muscle, J. Mol. Biol. 182, 443–454.PubMedGoogle Scholar
  282. 283.
    Ball, E., Karlik, C. C., Beall, C. J., Saville, D. L., Sparrow, J. C., Bullard, B., and Fyrberg, E. A. (1987) Arthrin, a myofibrillar protein of insect flight muscle, is an actin-ubiquitin conjugate, Cell 51, 221–228.PubMedGoogle Scholar
  283. 284.
    Jahngen, J. H., Haas, A. L., Ciechanover, A., Blondin, J., Eisenhauer, D., and Taylor, A. (1986) The eye lens has an active ubiquitin-protein conjugation system, J. Biol. Chem. 261, 13760–13767.PubMedGoogle Scholar
  284. 285.
    Jahngen, J. H., Lipman, R. D., Eisenhauer, D. A., Jahngen, E. G. E., and Taylor, A. (1990) Aging and cellular maturation cause changes in ubiquitin-eye lens protein conjugates, Arch. Biochem. Biophys. 276, 32–37.PubMedGoogle Scholar
  285. 286.
    Huang, L. L., Jahngen-Hodge, J., and Taylor, A. (1993) Bovine lens epithelial cells have a ubiquitin-dependent proteolysis system, Biochim. Biophys. Acta 1175, 181–187.PubMedGoogle Scholar
  286. 287.
    Laub, M., and Jennissen, H. P. (1991) Ubiquitination of myosin light chains, Biol. Chem. Hoppe-Seyler 372, 704.Google Scholar
  287. 288.
    Johnson, P., and Hammer, J. L. (1991) Ubiquitination of smooth muscle calpain II catalytic subunit, Biochem. Soc. Trans. 19, 410S.PubMedGoogle Scholar
  288. 289.
    Siegelman, M., Bond, M. W., Gallatin, W. M., St. John, T. S., Smith, H. T., Fried, V. A., and Weissman, I. L. (1986) Cell surface molecule associated with lymphocyte homing is a ubiquitinated branched-chain glycoprotein, Science 231, 823–829.Google Scholar
  289. 290.
    St. John, T., Gallatin, W. M., Siegelman, M., Smith, H. T., Fried, V. A., and Weissman, I. L. (1986) Expression cloning of a lymphocyte homing receptor cDNA: Ubiquitin is the reactive species, Science 231, 845–850.Google Scholar
  290. 291.
    Van de Rijn, M., Weissman, I. L., and Siegelman, M. (1990) Biosynthesis pathway of gp90Me1–14, the mouse lymph node-specific homing receptor, J. Immunol. 145, 1477–1482.Google Scholar
  291. 292.
    Lasky, L. A., Singer, M. S., Yednock, T. A., Dowbenko, D., Fennie, C., Rodriguez, H., Nguyen, T., Stachel, S., and Rosen, S. D. (1989) Cloning of a lymphocyte homing receptor reveals a lectin domain, Cell 56, 1045–1055.PubMedGoogle Scholar
  292. 293.
    Siegelman, M. H., van de Rijn, M., and Weisman, I. L. (1989) Mouse lymph node homing receptor cDNA clone encodes a glycoprotein revealing tandem interaction domains, Science 243, 1165–1172.Google Scholar
  293. 294.
    Hou, D., Cenciarelli, C., Jensen, J. P., Nguygen, H. B., and Weissman, A. M. (1994) Activation-dependent ubiquitination of a T cell antigen receptor subunit on multiple intracellular lysines, J. Biol. Chem. 269, 14244–14247.PubMedGoogle Scholar
  294. 295.
    Bowen, B. R., Fennie, C., and Lasky, L. A. (1990) The MEL 14 antibody binds to the lectin domain of the murine peripheral lymph node homing receptor, J. Cell Biol. 110, 147–153.PubMedGoogle Scholar
  295. 296.
    Leung, D. W., Spencer, S. A., Cachianes, G., Hammonds, R. G., Collins, C., Henzel, W. J., Barnard, R., Waters, M. J., and Wood, W. I. (1987) Growth hormone receptor and serum binding pro- tein: purification, cloning and expression, Nature 330, 537–543.PubMedGoogle Scholar
  296. 297.
    Spencer, S. A., Hammonds, R. G., Henzel, W. J., Rodriguez, H., Waters, M. J., and Wood, W. I. (1988) Rabbit liver growth hormone receptor and serum binding protein. Purification, characterization and sequence, J. Biol. Chem. 263, 7862–7867.PubMedGoogle Scholar
  297. 298.
    Yarden, Y., Escobedo, J. A., Kuang, W.-J., Yang-Feng, T. L., Daniel, T. O., Tremble, P. M., Chen, E. Y., Ando, M. E., Harkins, R. N., Francke, U., Fried, V. A., Ullrich, A., and Williams, L. T. (1986) Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors, Nature 323, 226–232.PubMedGoogle Scholar
  298. 299.
    Mori, S., Heldin, C.-H., and Claesson-Welsh, L. (1992) Ligand-induced polyubiquitination of the platelet-derived growth factor a-receptor, J. Biol. Chem. 267, 6429–6434.PubMedGoogle Scholar
  299. 300.
    Mori, S., Heldin, C.-H., and Claesson-Welsh, L. (1993) Ligand-induced ubiquitination of the platelet-derived growth factor a-receptor plays a negative regulatory role in its mitogenic signalling, J. Biol. Chem. 268, 577–583.PubMedGoogle Scholar
  300. 301.
    Tracey, K. J., and Cerami, A. (1994) Tumor necrosis factor: A pleiotropic cytokine and therapeutic target, Annu. Rev. Med. 45, 491–503.PubMedGoogle Scholar
  301. 302.
    Loetscher, H., Schlaeger, E. J., Lahm, H. W., Pan, Y. C. E., Less-lauer, W., and Brockhaus, M. (1990) Purification and partial amino acid sequence analysis of two distinct tumor necrosis factor receptors from HL60 cells, J. Biol. Chem. 265, 20131–20138.PubMedGoogle Scholar
  302. 303.
    Cenciarelli, C., Hou, D., Hsu, K. C., Rellahan, B. L., Wiest, D. L., Smith, H. T., Fried, V. A., and Weissman, A. M. (1992) Activation-induced ubiquitination of the T cell antigen receptor, Science 257, 795–797.PubMedGoogle Scholar
  303. 304.
    Paolini, R., and Kinet, J. P. (1993) Cell surface control of the multiubiquitination and deubiquitylation of high-affinit immunglobulin E receptor, EMBO J. 12, 779–786.Google Scholar
  304. 305.
    Jonnalagadda, S., Butt, T. R., Monia, B. P., Mirabelli, C. K., Gotlib, L., Ecker, D. J., and Crooke, S. T. (1989) Multiple (a-NH-ubiquitin) protein endoproteases in cells, J. Biol. Chem. 264, 10637–10642.PubMedGoogle Scholar
  305. 306.
    Agell, N., Ryan, C., and Schlesinger, M. J. (1991) Partial purification and substrate specificity of a ubiquitin hydrolase from Saccharomyces cerevisiae, Biochem. J. 273, 615–620.Google Scholar
  306. 307.
    Andersen, M. W., Goldknopf, I. L., and Busch, H. (1981) Protein A24 lyase is an isopeptidase, FEBS Lett. 132, 210–214.PubMedGoogle Scholar
  307. 308.
    Matsui, S.-I., Sandberg, A. A., Negoro, A., Seon, B. K., and Goldstein, G. (1982) Isopeptidase: A novel eukaryotic enzyme that cleaves isopeptide bonds, Proc. Natl Acad. Sci. USA 79, 1535–1539.PubMedGoogle Scholar
  308. 309.
    Wilkinson, K. D., Cox, M. J., Mayer, A. N., and Frey, T. (1986) Synthesis and characterization of ubiquitin ethyl ester, a new substrate for ubiquitin carboxyl-terminal hydrolase, Biochemistry 25, 6644–6649.PubMedGoogle Scholar
  309. 310.
    Pickart, C. M., and Rose, I. A. (1985) Ubiquitin carboxyl-terminal hydrolase acts on ubiquitin carboxyl-terminal amides, J. Biol. Chem. 260, 7903–7910.PubMedGoogle Scholar
  310. 311.
    Chen, Z., and Pickart, C. M. (1990) A 25-kilodalton ubiquitin carrier protein (E2) catalyzes multiubiquitin chain synthesis via lysine 48 of ubiquitin, J. Biol. Chem. 265, 21835–21842.PubMedGoogle Scholar
  311. 312.
    Eytan, E., Armon, T., Heller, H., Beck, S., and Hershko, A. (1993) Ubiquitin C-terminal hydrolase activity associated with the 26S protease complex, J. Biol. Chem. 268, 4668–4674.PubMedGoogle Scholar
  312. 313.
    Mahaffey, D., Yoo, Y., and Rechsteiner, M. (1993) Ubiquitin metabolism in cycling Xenopus egg extracts, J. Biol. Chem. 268, 21205–21211.PubMedGoogle Scholar
  313. 314.
    Ugai, S., Tamura, T., Tanahashi, N., Takai, S., Komi, N., Chung, C. H., and Tanaka, K. (1993) Purification and characterization of the 26S proteasome complex catalyzing ATP-dependent breakdown of ubiquitin-ligated proteins from rat liver, J. Biochem. (Tokyo) 113, 754–768.Google Scholar
  314. 315.
    Krebs, E. G. (1983) Historical perspectives on protein phosphorylation and a classification system for protein kinases, Phil. Trans. R. Soc. Lond. 302, 3–11.Google Scholar
  315. 316.
    Fischer, E. H., and Krebs, E. G. (1955) Conversion of phosphorylase b to phosphorylase a in muscle extracts, J. Biol. Chem. 216, 121–132.PubMedGoogle Scholar
  316. 317.
    Loeb, K. R., and Haas, A. L. (1992) The Interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins, J. Biol. Chem. 267, 7806–7813.PubMedGoogle Scholar
  317. 318.
    Rechsteiner, M., Hoffmann, L., and Dubiel, W. (1993) The multicatalytic and 26S proteases, J. Biol. Chem. 268, 6065–6068.PubMedGoogle Scholar
  318. 319.
    Baumeister, W., Dahlmann, B., Hegerl, R., Kopp, F., Kuehn, L., and Pfeffer, G. (1988) Electron microscopy and image analysis of the multicatalytic proteinase, FEBS Lett. 241, 239–245.PubMedGoogle Scholar
  319. 320.
    Pacifici, R. E., Salo, D. C., and Davies, K. J. A. (1989) Macroxyproteinase (M. O. P): A 670 kDa proteinase complex that degrades oxidatively denatured proteins in red blood cells, Free Radical Biol. Med. 7, 521–536.Google Scholar
  320. 321.
    Sacchetta, P., Battista, P., Santarone, S., and Di Cola, D. (1990) Purification of human erythrocyte proteolytic enzyme responsible for degradation of oxidant-damaged hemoglobin. Evidence for identifying it as a member of the multicatalytic proteinase family, Biochim. Biophys. Acta 1037, 337–343.PubMedGoogle Scholar
  321. 322.
    Pacifici, R. E., Kono, Y., and Davies, K. J. A. (1993) Hydrophobicity as the signal for selective degradation of hydroxyl radical-modified hemoglobin by multicatalytic proteinase complex, proteasome, J. Biol. Chem. 268, 15405–15411.PubMedGoogle Scholar
  322. 323.
    Ganoth, D., Leshinsky, E., Eytan, E., and Hershko, A. (1988) A multicomponent system that degrades proteins conjugated to ubiquitin, J. Biol. Chem. 263, 12412–419.PubMedGoogle Scholar
  323. 324.
    Heller, J. S., Fong, W. F., and Canellakis, E. S. (1976) Induction of a protein inhibitor to omithine decarboxylase by the end products of its reaction, Proc. Natl Acad. Sci. USA 73, 1858–1862.PubMedGoogle Scholar
  324. 325.
    Seely, J. E., and Pegg, A. E. (1983) Changes in mouse kidney orni-thine decarboxylase activity are brought about by changes in the amount of enzyme protein as measured by radioimmunassay, J. Biol. Chem. 258, 2496–2500.PubMedGoogle Scholar
  325. 326.
    Glass, J. R., and Gerner, E. W. (1987) Spermidine mediates degradation of ornithine decarboxylase by a non-lysosomal, ubiquitinindependent mechanism, J. Cell Physiol. 130, 133–141.PubMedGoogle Scholar
  326. 327.
    Rosenberg-Hasson, Y., Bercovich, Z., Ciechanover, A., and Kahana, C. (1989) Degradation of ornithine decarboxylase in mammalian cells is ATP-dependent but ubiquitin independent, Eue J. Biochem. 185, 469–474.Google Scholar
  327. 328.
    Flamigni, F., Marmiroli, S., Guarneri, C., and Caldarera, C. M. (1989) Stabilization of omithine decarboxylase in erythroleukemia cells depleted of ATP, Biochem. Biophys. Res. Commun. 163, 1217–1222.PubMedGoogle Scholar
  328. 329.
    Chiang, H.-L., Terlecky, S. R., Plant, C. P., and Dice, J. F. (1989) A role for a 70-kilodaton heat shock protein in lysosomal degradation of intracellular proteins, Science 246, 382–385.PubMedGoogle Scholar
  329. 330.
    Sherman, M. Y., and Goldberg, A. L. (1992) Involvement of the chaperonin dnaK in the rapid degradation of a mutant protein in Eschericha coli, EMBO J. 11, 71–77.Google Scholar
  330. 331.
    Schumacher, R. J., Hurst, R., Sullivan, W. P., McMahon, N. J., Toft, D. O., and Matts, R. L. (1994) ATP-dependent chaperoning activity of reticulocyte lysate, J. Biol. Chem. 269, 9493–9499.PubMedGoogle Scholar
  331. 332.
    Wenzel, T., and Baumeister, W. (1993) Thermoplasma acidophilum proteasomes degrade partially unfolded and ubiquitin-associated proteins, FEBS Lett. 326, 215–218.PubMedGoogle Scholar
  332. 333.
    Fried, V. A., Smith, H. T., Hildebrandt, E., and Weiner, K. (1987) Ubiquitin has intrinsic proteolytic activity: implications for cellular regulation, Proc. Natl Acad. Sci. USA 84, 3685–3689.PubMedGoogle Scholar
  333. 334.
    Fried, V. A., and Smith, H. T. (1989) Ubiquitin: A multifunctional regulatory protein associated with the cytoskeleton, Prog. Clin. Biol. Res. 317, 733–744.PubMedGoogle Scholar
  334. 335.
    Oliver, C. N., and Stadtman, E. R. (1983) A proteolytic artifact associated with the lysis of bacteria by egg white lysozyme, Proc. Natl Acad. Sci. USA 80, 2156–2160.PubMedGoogle Scholar
  335. 336.
    Parakh, K. A., and Kaman, K. (1992) Ubiquitin with a non-ATPdependent slow intrinsic proteolytic activity: A mild and rapid purification procedure, Indian J. Biochem. Biophys. 29, 303–305.PubMedGoogle Scholar
  336. 337.
    Lippincott-Schwartz, J., Bonifacino, J. S., Yuan, L. C., and Klausner, R. D. (1988) Degradation from the endoplasmic reticulum: Disposing of newly synthesized proteins, Cell 54, 209–220.PubMedGoogle Scholar
  337. 338.
    Klausner, R. D., and Sitia, R. (1990) Protein degradation in the endoplasmic reticulum, Cell 62, 611–614.PubMedGoogle Scholar
  338. 339.
    Fra, A., and Sitia, R. (1993) The endoplasmic reticulum as a site of protein degradation, Subcell. Biochem. 21, 143–168.PubMedGoogle Scholar
  339. 340.
    Bonifacino, J. S., Suzuki, C. K., and Klausner, R. D. (1990) A peptide sequence confers retention and rapid degradation in the endoplasmic reticulum, Science 247, 79–82.PubMedGoogle Scholar
  340. 341.
    Bonifacino, J. S., Cosson, P., and Klausner, R. D. (1990) Colocalized transmembrane determinants for ER degradation and subunit assembly explain the intracellular fate of TCR chains, Cell 63, 503–513.PubMedGoogle Scholar
  341. 342.
    Gil, G., Faust, J. R., Chin, D. J., Goldstein, J. L., and Brown, M. S. (1985) Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzyme, Cell 41, 249–258.PubMedGoogle Scholar
  342. 343.
    Nakanishi, M., Goldstein, J. L., and Brown, M. S. (1988) Multivalent control of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mevalonat-derived product inhibits translation of mRNA and accelerates degradation of enzyme, J. Biol. Chem. 263, 8929–8937.PubMedGoogle Scholar
  343. 344.
    Inoue, S., Bar-Nun, S., Roitelman, J., and Simoni, R. D. (1991) Inhibition of degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in vivo by cystein protease inhibitors, J. Biol. Chem. 266, 13311–13317.PubMedGoogle Scholar
  344. 345.
    Correll, C. C., and Edwards, P. A. (1994) Mevalonic acid-dependent degradation of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase in vivo and in vitro, J. Biol. Chem. 269, 633–638.Google Scholar
  345. 346.
    Hampton, R. Y., and Rine, J. (1994) Regulated degradation of HMGCoA reductase, an integral membrane protein of the endoplasmic reticulum in yeast, J. Cell Biol. 125, 299–312.PubMedGoogle Scholar
  346. 347.
    Sakata, N., Wu, X., Dixon, J. L., and Ginsberg, H. N. (1993) Proteolysis and lipid-facilitated translocation are distinct but cornpetetive processes that regulate secretion of apolipoprotein B in Hep G2 cells, J. Biol. Chem. 268, 22967–22970.PubMedGoogle Scholar
  347. 348.
    Adeli, K. (1994) Regulated intracellular degradation of apolipoprotein B in semipermeable HepG2 cells, J. Biol. Chem. 269, 9166–9175.PubMedGoogle Scholar
  348. 349.
    Wikstroem, L., and Lodish, H. F. (1992) Endoplasmic reticulum degradation of subunit of the asialoglycoprotein receptor in vitro, J. Biol. Chem. 267, 5–8.Google Scholar
  349. 350.
    Yuk, M. H., and Lodish, H. F. (1993) Two pathways for the degradation of the H2 subunit of the asialoglycoprotein receptor in the endoplasmic reticulum, J. Cell Biol. 123, 1735–1749.PubMedGoogle Scholar
  350. 351.
    Zhukov, A., Werlinder, V., and Ingelman-Sundberg, M. (1993) Purification and characterization of two membrane bound serine proteinases from rat liver microsomes active in the degradation of cytochrome P450, Biochem. Biophys. Res. Commun. 197, 221–228.PubMedGoogle Scholar
  351. 352.
    Gardener, A. M., Aviel, S., and Argon, Y. (1993) Rapid degradation of unassembled immunoglobulin light chain is mediated by a serine protease and occurs in a pre-golgi compartment, J. Biol. Chem. 268, 25940–25947.Google Scholar
  352. 353.
    Jackson, M. R., Cohen-Doyle, M. F., Peterson, P. A., and Williams, D. B. (1994) Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, 1P90), Science 263, 384–387.PubMedGoogle Scholar

Copyright information

© FEBS 1995

Authors and Affiliations

  • Herbert P. Jennissen
    • 1
  1. 1.Institut für Physiologische ChemieUniverstät-GHS-EssenGermany

Personalised recommendations