EJB Reviews pp 129-142 | Cite as

The chaperonin containing t-complex polypeptide 1 (TCP-1)

Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol
  • Hiroshi Kubota
  • Gillian Hynes
  • Keith Willison
Part of the European Journal of Biochemistry book series (EJB REVIEWS, volume 1995)


Many proteins in the cell require assistance from molecular chaperones at stages in their life cycles in order to attain correctly folded states and functional conformations during protein synthesis or during recovery from denatured states. A recently discovered molecular chaperone, which is abundant in the eukaryotic cytosol and is called the chaperonin containing TCP-1 (CCT), has been shown to assist the folding of some proteins in cytosol. This chaperone is a member of the chaperonin family which includes GroEL, 60-kDa heat shock protein (Hsp60), Rubisco subunit binding protein (RBP) and thermophilic factor 55 (TF55), but is distinct from the other members in several respects. Presently the most intriguing feature is the hetero-oligomeric nature of the CCT; at least eight subunit species which are encoded by independent and highly diverged genes are known. These genes are calculated to have diverged around the starting point of the eukaryotic lineage and they are maintained in all eukaryotes investigated, suggesting a specific function for each subunit species. The amino acid sequences of these subunits share approximately 30% identity and have some highly conserved motifs probably responsible for ATPase function, suggesting this function is common to all subunits. Thus, each subunit is thought to have both specific and common functions. These observations, in conjunction with biochemical and genetic analysis, suggest that CCT functions as a very complex machinery for protein folding in the eukaryotic cell and that its chaperone activity may be essential for the folding and assembly of various newly synthesized polypeptides. This complex behaviour of CCT may have evolved to cope with the folding and assembly of certain highly evolved proteins in eukaryotic cells.


Chaperonin containing t-complex polypeptide 1 (CCT) chaperonin molecular chaperone protein folding t-complex polypeptide 1 (TCP-1) 



chaperonin containing TCP-1

Ccta,Cctb,Cctg,Cctd,Ccte,Cctz,Ccth and cctq

genes encoding α, β, γ, δ, ε, ζ, η and θ subunits of CCT, respectively


60-kDa heat-shock protein


major histocompatibility complex


ribulose-bisphosphate carboxylase


Rubisco subunit binding protein


the gene complex of mouse chromosome 17 producing the tailless phenotype


t-complex polypeptide 1


thermophilic factor 55


transmission ratio distortion


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, L. (1988) Genetic polymorphism of a bovine t-complex gene (TCP1) linkage to major histocompatibility genes, J. Hered. 79, 1–5.PubMedGoogle Scholar
  2. Ashworth, A., Malik, A. N., Walkley, N. A., Kubota, H. and Willison, K. R. (1994) The Tcp-l-related gene, Cctg, maps to mouse chromosome 3, Mammal. Genonze 5, 509–510.Google Scholar
  3. Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L. and Sigler, P. B. (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A, Nature 371, 578–586.PubMedGoogle Scholar
  4. Chen, S., Roseman, A. M., Hunter, A. S., Wood, S. P., Burston, S. G., Ranson, N. A., Clarks, A. R. and Saibil, H. R. (1994) Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy, Nature 371, 261–264.PubMedGoogle Scholar
  5. Chen, X., Sullivan, D. S. and Huffaker, T. C. (1994) Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo, Proc. Natl Acad. Sci. USA 91, 9111–9115.Google Scholar
  6. Cheng, M. Y., Hard, F.-U., Martin, J., Pollock, R. A., Kalousek, F., Neupert, W., Hallberg, E. M., Hallberg, R. L. and Horwich, A. L. (1989) Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria, Nature 337, 620–625.PubMedGoogle Scholar
  7. Corbett, J. and Dunn, M. J. (1992) Two-dimensional polyacrylamide gel electrophoresis of membrane proteins, in Methods in molecular biology (Graham, J. M. and Higgins, J. A., eds) vol. 19, pp. 219–227Google Scholar
  8. Creutz, C. E., Liou, A., Snyder, S. L., Brownawell, A. and Willison, K. (1994) Identification of the major chromaffin granule-binding protein, chromobindin A, as the cytosolic chaperonin CCT (chaperonin containing TCP-1), J. Biol. Chem. 269, 32035–32038.Google Scholar
  9. Dudley, K., Potter, J., Lyon, M. F. and Willison, K. (1984) Analysis of male sterile mutations in the mouse using haploid stage expressed cDNA probes, Nucleic Acids Res. 12, 4281–4293.PubMedGoogle Scholar
  10. Ehmann, B., Krenz, M., Mummert, E. and Schafer, E. (1993) Two Tcp-1related but highly divergent gene families exist in oat encoding proteins of assumed chaperone function, FEBS Lett. 336, 313–316.PubMedGoogle Scholar
  11. Ellis, R. J. (1990) Molecular chaperones: the plant connection, Science 250, 954–959.PubMedGoogle Scholar
  12. Ellis, R. J. (1992) Cytosolic chaperonin confirmed, Nature 358, 191–192.PubMedGoogle Scholar
  13. Ellis, R. J. (1994) Chaperoning nascent proteins, Nature 370, 96–97PubMedGoogle Scholar
  14. Ellis, R. J. and van der Vies, S. M. (1991) Molecular Chaperones, Annu. Rev. Biochem. 60, 321–347.Google Scholar
  15. Fenton, W. A., Kashi, Y., Furtak, K. and Horwich, A. L. (1994) Residues in chaperonin GroEL polypeptide binding and release, Nature 371, 614–619.PubMedGoogle Scholar
  16. Frydman, J., Nimmesgem, E., Erdjument-Bromage, H., Wall, J. S., Tempst, P. and Hartl, F.-U. (1992) Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits, EMBO J. 11, 4767–4778.PubMedGoogle Scholar
  17. Frydman, J., Nimmesgern, E., Ohtsuka, K. and Hard, F.-U. (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones, Nature 370, 111–117.PubMedGoogle Scholar
  18. Gao, Y., Thomas, J. O., Chow, R. L., Lee, G.-H. and Cowan, N. J. (1992) A cytoplasmic chaperonin that catalyze /3-actin folding, Cell 69, 1043–1050.PubMedGoogle Scholar
  19. Gao, Y., Vainberg, I. E., Chow, R. L. and Cowan, N. J. (1993) Two cofactors and cytoplasmic chaperonin are required for the folding of a-and ß-tubulin, Mol. Cell Biol. 13, 2478–2485.Google Scholar
  20. Gao, Y, Melki, R., Walden, P. D., Lewis, S. A., Ampe, C., Rommelaere, H., Vandekerckhove, J. and Cowan, N. J. (1994) A novel cochaperonin that modulates the ATPase activity of cytoplasmic chaperonin, J. Cell Biol. 125, 989–996.PubMedGoogle Scholar
  21. Georgopoulos, C. P., Hendrix, R. W., Casjens, S. R. and Kaiser, A. D. (1973) Host participation in bacteriophage lambda head assembly, J. Mol. Biol. 76, 45–60.Google Scholar
  22. Gething, M.-J. and Sambrook, J. (1992) Protein folding in the cell. Nature 355, 33 —45.Google Scholar
  23. Gray, T. E., Eder, J., Bycroft, M., Day, A. G. and Fersht, A. R. (1993) Refolding of barnase mutants and pro-bamase in the presence and absence of GroEL, EMBO J. 12, 4145–4150.PubMedGoogle Scholar
  24. Guagliardi, A., Cerchia, L., Bartolucci, S. and Rossi, M. (1994) The chaperonin from archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro, Protein Sci. 3, 1436–1443.PubMedGoogle Scholar
  25. Gupta, R. S. (1990) Sequence and structural homology between a mouse t-complex protein TCP-1 and the `chaperonin’ family of bacterial (GroEL, 60–65 kDa heat shock antigen) and eukaryotic proteins, Biochem. Int. 20, 833 —841.Google Scholar
  26. Gus-Mayer, S., Brunner, H., Schneider-Poetsch, H. A. W., Lottspeich, E, Eckerskom, C., Grimn, R. and Rudiger, W. (1994) The amino acid sequence previously attributed to a protein kinase or a TCP-1 related molecular chaperone and co-purified with phytochrome is a ß-glucosidase, FEBS Lett. 347, 51–54.PubMedGoogle Scholar
  27. Harrison-Lavoie, K. J., Lewis, V. A., Hynes, G. M., Collison, K. S., Nutland, E. and Willison, K. R. (1993) A 102 kDa subunit of a Golgi-associated particles has homology to ß subunits of trimeric G proteins, EMBO J. 12, 2847–2853.PubMedGoogle Scholar
  28. Hartl, F. U., Martin, J. and Neupert, W. (1992) Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60, Annu. Rev. Biophys. Biomol. Struct. 21, 293–322.Google Scholar
  29. Hemmingsen, S. M., Woolford, C., van der Vies, S. M., Tilly, K., Dennis, D. T., Georgopoulos, C. P., Hendrix, R. W. and Ellis, R. J. (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly, Nature 333, 330–334.PubMedGoogle Scholar
  30. Horwich, A. L., Low, K. B., Fenton, W. A., Hirshfield, I. N. and Furtak, K. (1993) Folding in vivo of bacterial cytoplasmic proteins: role of groEL, Cell 74, 909–917.PubMedGoogle Scholar
  31. Horwich, A. L. and Willison, K. R. (1993) Protein folding in the cell: function of two families of molecular chaperone, hsp60 and TF55TCP1, Phil. Trans. R. Soc. Lond. 339, 313–326.Google Scholar
  32. Hynes, G., Kubota, H. and Willison, K. R. (1995) Antibody characterisation of two distinct conformations of the chaperonin containing TCP-1 from mouse testis, FEBS Lett. 358, 129–132.PubMedGoogle Scholar
  33. Joly, E. C., Sevigny, G., Todorov, I. T. and Bibor-Hardy, V. (1994a) cDNA encoding a novel TCP-1-related protein, Biochim. Biophys. Acta 1217, 224–226.Google Scholar
  34. Joly, E. C., Tremblay, E., Tanguay, R. M., Wu, Y. and Bibor-Hardy, V. (1994b) TRiC-P5, a novel TCP-1-related protein is located in the cytoplasm and in the nuclear matrix, J. Cell Sci. 107, 2851–2859.PubMedGoogle Scholar
  35. Khan, A. S., Wilcox, A. S., Polymeropoulos, M. H., Hopkins, J. A., Stevens, T. J., Robinson, M., Orpana, A. K. and Sikela, J. M. (1992) Single pass sequencing and physical and genetic mapping of human brain cDNAs, Nature Genetics 2, 180–185.PubMedGoogle Scholar
  36. Kim, S., Willison, K. R. and Horwich, A. L. (1994) Cytosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains, Trends Biochem. Sci. 19, 543–548.Google Scholar
  37. Kimura, M. (1983) in The neutral theory of molecular evolution, Cambridge University Press, Cambridge.Google Scholar
  38. Kirchhoff, C. and Willison, K. R. (1990) Nucleotide and amino-acid sequence of human testis-derived TCP1, Nucleic Acids Res. 18, 4247.PubMedGoogle Scholar
  39. Knapp, S., Schmidt-Krey, I., Hebert, H., Bergman, T., Jomvall, H. and Ladenstein, R. (1994) The molecular chaperonin TF55 from archaeon Sulfolobus solfataricus,.1. Mol. Biol. 242, 397–407.Google Scholar
  40. Kolb, V. A., Makeyev, E. V. and Spirit’, A. S. (1994) Folding of firefly luciferase during translation in a cell-free system, EMBO J. 13, 3631–3637.PubMedGoogle Scholar
  41. Koll, H., Guiard, B., Rassow, J., Osterman, J., Horwich, A. L., Neupert, W. and Hartl, F.-U. (1992) Antifolding activity of hsp 60 couples protein import into the mitochondrial matrix with export to the inter-membrane space, Cell 68, 1163–1175.PubMedGoogle Scholar
  42. Kubota, H., Morita, T., Nagata, T., Takemoto, Y, Nozaki, M., Gachelin, G. and Matsushiro, A. (1991) Nucleotide sequence of mouse Tcp-P cDNA, Gene 105, 269–273.PubMedGoogle Scholar
  43. Kubota, H., Morita, T., Satta, Y., Nozaki, M. and Matsushiro, A. (1992a) Nucleotide sequence of a mouse Tcp-1 pseudogene: A nucleotide record for a t complex gene carried by an ancestor of the mouse, Mammal. Genome 2, 246–251.Google Scholar
  44. Kubota, H., Willison, K., Ashworth, A., Nozaki, M., Miyamoto, H., Yamamoto, H., Matsushiro, A. and Morita, T. (1992b) Structure and expression of the gene encoding t-complex polypeptide 1 (Tcp-1), Gene 120, 207–215.PubMedGoogle Scholar
  45. Kubota, H., Hynes, G., Carne, A., Ashworth, A. and Willison, K. (1994) Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin, Curr. Biol. 4, 89–99.Google Scholar
  46. Kubota, H., Hynes, G. and Willison, K. (1995) The eighth Cct gene, Cctq, encoding the theta subunit of the cytosolic chaperonin containing TCP-1, Gene, in the press.Google Scholar
  47. Kyte, J. and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157, 105–132.Google Scholar
  48. Langer, T., Lu, C., Echols, H., Flanagan, J., Hayer, M. K. and Hartl, EU. (1992a) Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding, Nature 356, 683–689.Google Scholar
  49. Langer, T., Pfeifer, G., Martin, J., Baumeister, W. and Hartl, E-U. (1992b) Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accomodates the protein substrate within its central cavity, EMBO J. 11, 4757–4765.Google Scholar
  50. Lewis, V. A., Hynes, G. M., Zheng, D., Saibil, H. and Willison, K. (1992) T-complex polypeptide-1 is a subunit öf a heteromeric particle in the eukaryotic cytosol, Nature 358, 249–252.PubMedGoogle Scholar
  51. Li, W.-Z., Lin, P., Frydman, J., Boal, T. R., Cardillo, T. S., Richard, L. M., Toth, D., Lichtman, M. A., Hartl, F.-U., Sherman, F. and Segel, G. B. (1994) Tcp20, a subunit of the eukaryotic TRiC chaperonin from humans and yeast, J. Biol. Chem. 269, 18 616–18 622.Google Scholar
  52. Lingappa, J. R., Martin, R. L., Wong, M. L., Gamen, D., Welch, W. J. and Lingappa, V. R. (1994) A eukaryotic cytosolic chaperonin is associated with a high molecular mass intermediate in the assembly of hepatitis B virus capsid, a multimeric particle, J. Cell Biol. 125, 99111.Google Scholar
  53. Maercker, C. and Lipps, H. J. (1994) A macronuclear DNA molecule from the hypotrichous ciliate Stylonychia lemnae encoding a t-complex polypeptide 1-like protein, Gene 141, 147–148.PubMedGoogle Scholar
  54. Marco, S., Carrascossa, J. L. and Valpuesta, J. M. (1994) Reversible interaction of ß-actin along the channel of the TCP-1 cytoplasmic chaperonin, Biophys. J. 67, 364–368.Google Scholar
  55. Martel, R., Cloney, L. P., Pelcher, L. E. and Hemmingsen, S. M. (1990) Unique composition of plastid chaperonin-60: a and f polypeptide-encoding genes are highly divergent, Gene 94, 181–187.PubMedGoogle Scholar
  56. Martin, J., Langer, T., Boteva, R., Schramel, A., Horwich, A. L. and Hartl, F.-U. (1991) Chaperonin-mediated protein folding at the surface of groEL through a `molten globule’-like intermediate, Nature 352, 36–42.PubMedGoogle Scholar
  57. Martin, W. H. and Creutz, C. E. (1987) Chromobindin A• a Ca2+ and ATP regulated chromaffin granule binding protein, J. Biol. Chem. 262, 2803–2810.Google Scholar
  58. Martin, W. H., Fromer, E. and Creutz, C. E. (1989) Chromobindin A, a Ca2+ and ATP-dependent chromaffin granule is found in a variety of tissues and in yeast, Biochem. Biophys. Res. Commun. 165, 3742.Google Scholar
  59. Martin, W. H. and Creutz, C. E. (1990) Interaction of the complex scretory vesicle binding protein chromobindin A with nucleotides, J. Neurochem. 54, 612–619.PubMedGoogle Scholar
  60. Mehra, V., Sweetser, D. and Young, R. A. (1986) Efficient mapping of protein antigenic determinants, Proc. Natl Acad. Sci. USA 83, 7013 —7017.Google Scholar
  61. Melki, R. and Cowan, N. J. (1994) Facilitated folding of actins and tubulins occurs via a nucleotide-dependent interaction between cytoplasmic chaperonin and distinctive folding intermediates, Mol. Cell. Biol. 14, 2895–2904.Google Scholar
  62. Melki, R., Vainberg, I. E., Chow, R. L. and Cowan, N. J. (1993) Chaperonin-mediated folding of vertebrate actin-related protein and y-tubulin, J. Cell Biol. 122, 1301–1310.PubMedGoogle Scholar
  63. Miklos, G. L. G. and Campbell, H. D. (1992) The evolution of domains and the organizational complexities of metazoans, Curr. Opin. Genet. Develop. 2, 902–906.Google Scholar
  64. Miklos, D., Caplan, S., Martens, D., Hynes, G., Pitluk, Z., Brown, C., Barrell, B., Horwich, A. L. and Willison, K. (1994) Primary structure and function of a second essential member of heterooligomeric TCP1 chaperonin complex of yeast, TCP1ß, Proc. Natl Acad. Sci. USA 91, 2743–2747.Google Scholar
  65. Mori, M., Murata, K., Kubota, H., Yamamoto, A., Matsushiro, A. and Morita, T. (1992) Cloning of a cDNA encoding the Tcp-1 (t complex polypeptide 1) homologue of Arabidopsis thaliana, Gene 122, 381382.Google Scholar
  66. Morimoto, R. I., Tissieres, A. and Georgopoulos, C. (1994) Progress and perspectives on the biology of heat shock proteins and molecular chaperones, in The biology of heat shock proteins and molecular chaperones ( Morimoto, R. I., Tissieres, A. and Georgopoulos, C., eds) pp. 1–30, Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY.Google Scholar
  67. Morita, T., Kubota, H., Gachelin, G., Nozaki, M. and Matsushiro, A. (1991) Cloning of cDNA encoding rat TCP-1, Biochim. Biophys. Acta 1129, 96–99.Google Scholar
  68. Morita, T., Kubota, H., Murata, K., Nozaki, M., Delarbre, C., Willison, K., Satta, Y., Sakaizumi, M., Takahata, N., Gachelin, G. and Matsushiro, A. (1992) Evolution of the mouse t haplotype: Recent and worldwide introgression to Mus Musculus, Proc. Natl Acad. Sci. USA 89, 6851–6855.Google Scholar
  69. Morita, T., Kubota, H., Satta, Y. and Matsushiro, A. (1993) Evolution of the mouse t haplotype, in Mechanism of molecular evolution: Introduction to molecular paelopopulation biology (Takahata, N. and Clark, A. G., eds) pp. 151–158Google Scholar
  70. Mudryj, M., Devoto, S. H., Heibert, S. W., Hunter, T., Pines, T. and Nevins, J. R. (1991) Cell cycle regulation of E2F transcription factor involuves an interaction with cyclin A, Cell 65, 1243–1253.PubMedGoogle Scholar
  71. Mummert, E., Grimm, R., Speth, V., Eckerskorn, C., Schiltz, E., Gatenby, A. A. and Schafer, E. (1993) A TCP-1-related molecular chaperone from plants refolds phytochrome to its photoreversible form, Nature 363, 644–648.PubMedGoogle Scholar
  72. Mummert, E., Grimm, R., Speth, V., Eckerskom, C., Schiltz, E., Gatenby, A. A. and Schafer, E. (1994) Erratum, Nature 372, 709. Musgrove, J. E., Johnson, R. A. and Ellis, R. J. (1987) Dissociation of the ribulosebisphosphate-carboxylase large-subunit binding protein into dissimilar subunits, Eur. J. Biochem. 163, 529–534.Google Scholar
  73. Paciucci, R. (1994) Role of 300 kDa complexes as intermediates in tubulin folding and dimerization: characterization of a 25 kDa cytosolic protein involved in the GTP-dependent release of monomeric tubulin, Biochem. J. 301, 105–110.Google Scholar
  74. Peters, J.-M. (1994) Proteasomes: protein degradation machines of the cell, Trends Biochem. Sci. 19, 377–382.Google Scholar
  75. Phipps, B. M., Hoffmann, A., Stetter, K. O. and Baumeister, W. (1991) A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archebacteria, EMBO J. 10, 1711–1722.PubMedGoogle Scholar
  76. Phipps, B. M., Typke, D., Hegerl, R., Volker, S., Hoffmann, A., Stetter, K. O. and Baumeister, W. (1993) Structure of a molecular chaperone from a thermophilic archaebacterium, Nature 361, 475–477.Google Scholar
  77. Reading, D. S., Hallberg, R. L. and Myers, A. M. (1989) Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor, Nature 337, 655–659.PubMedGoogle Scholar
  78. Rommelaere, H., van Troys, M., Gao, Y., Melki, R., Cowan, N. J., Vandekerckhove, J. and Ampe, C. (1993) Eukaryotic cytosolic chaperonin contains t-complex polypeptide 1 and seven related subunits, Proc. Natl Acad. Sci. USA 90, 11975–11979.Google Scholar
  79. Roobol, A. and Carden, M. J. (1993) Identification of chaperonin particles in mammalian brain cytosol and t-complex polypeptide 1 as one of their components, J. Neurochem. 60, 2327–2330.PubMedGoogle Scholar
  80. Roobol, A., Holmes, F. E., Hayes, N. V. L., Baines, A. J. and Carden, A. J. (1995) Cytoplasmic chaperonin complex enter neuntes developing in vitro and differ in subunit composition within single cells, J. Cell Sci., in the press.Google Scholar
  81. Saffer, J. D., Jackson, S. P. and Annarella, M. B. (1991) Developmental expression of Sp1 in the mouse, Mol. Cell. Biol. 11, 2189–2199.Google Scholar
  82. Saibil, H. R., Zheng, D., Roseman, A. M., Hunter, A. S., Watson, G. M. F., Chen, S., auf der Mauer, A., O’Hara, B. P., Wood, S. P., Mann, N. H., Barnett, L. K. and Ellis, R. J. (1993) ATP induces large quaternary rearrangements in a cage-like chaperonin structure, Curr. Biol. 3, 265–273.Google Scholar
  83. Saitou, N. and Nei, M. (1987) Neighbor joining method: A new method for reconstructing phylogenetic trees, Mol. Biol. Evol. 4, 406–425. Sanchez, E. R. and Erickson, R. P. (1985) Expression of the Tcp-1 locus of the mouse during early embryogenesis, J. Embryol. Exp. Morph. 89, 113–122.Google Scholar
  84. Sanders, B. M., Nguyen, J., Douglass, T. G. and Miller, S. (1994) Heat-inducible proteins that react with antibodies to chaperonin 60 are localized in the nucleus of a fish cell line, Biochem. J. 297, 2125.Google Scholar
  85. Segel, G. B., Boal, T. R., Cardillo, T. S., Murant, F. G., Lichtman, M. A. and Sherman, F. (1992) Isolation of a gene encoding a chaperoninlike protein by complementation of yeast amino acid transport mutants with human cDNA, Proc. Natl Acad. Sci. USA 89, 6060–6064.Google Scholar
  86. Sevigny, G., Joly, E. C., Bibor-Hardy, V. and Lemieux, N. (1994) Assignment of the human homologue of the mTRiC-P5 gene (TRIC5) to band 1q23 by fluorescence in situ hybridization, Genomics 22, 634–636.PubMedGoogle Scholar
  87. Silver, L. M. (1985) Mouse t haplotypes, Annu. Rev. Genet. 19, 179–208.Google Scholar
  88. Silver, L. M., Artzt, K. and Bennett, D. (1979) A major testicular cell protein specified by a mouse Tit complex gene, Cell 17, 275–284.PubMedGoogle Scholar
  89. Silver, L. M., Kleen, K. C., Distel, R. J. and Hecht, N. B. (1987) Synthesis of mouse t complex proteins during haploid stages of spermatogenesis, Dey. Biol. 119, 605–608.Google Scholar
  90. Silver, L. M. and Remis, D. (1987) Five genetically defined regions of mouse t haplotypes are involved in transmission ratio distortion, Genet. Res. Camb. 49, 51–56.Google Scholar
  91. Silver, P. A. and Way, J. C. (1993) Eukaryotic DnaJ homologs and the specificity of Hsp70 activity, Cell 74, 5–6.PubMedGoogle Scholar
  92. Soares, H., Penque, D., Mouta, C. and Rodrigues-Pousada, C. (1994) A Tetrahymena orthologue of the mouse chaperonin subunit CCTy and its co-expression with tubulin during cilia recovery, J. Biol. Cheni. 269, 29 299–29 307.Google Scholar
  93. Sternlicht, H., Fan, G. W., Sternlicht, M. L., Driscoll, J. K., WillisonGoogle Scholar
  94. K. and Yaffe, M. B. (1993) The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo, Proc. Natl Acad. Sci. USA 90, 9422–9426.Google Scholar
  95. Sun, H. B., Neff, A. W., Mescher, A. L. and Malacinski, G. M. (1995) Expression of the axolotl homologue of mouse chaperonin t-complex protein 1 during early development, Biochim. Biophys. Acta 1260, 157–166.Google Scholar
  96. Trent, J. D., Osipiuk, J. and Pinkau, T. (1990) Acquired thermotolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus spl. strain B12, J. Bacteriol. 172, 1478–1484.PubMedGoogle Scholar
  97. Trent, J. D., Nimmesgem, E., Wall, J. S., Hard, E-U. and Horwich, A. L. (1991) A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1, Nature 354, 490–493.PubMedGoogle Scholar
  98. Ursic, D. and Culbertson, M. R. (1991) The yeast homolog to mouse Tcp-1 affects microtubule-mediated processes, Mol. Cell. Biol. 11, 2629–2640.Google Scholar
  99. Ursic, D. and Ganetzky, B. (1988) A Drosophila melanogaster gene encodes a protein homologous to the mouse t complex polypeptide 1, Gene 68, 267–274.PubMedGoogle Scholar
  100. Ursic, D., Sedbrook, J. C., Himmel, K. L. and Culbertson, M. R. (1994) The essential yeast Tcpl affects actin and microtubules, Mol. Biol. Cell. 5, 1650–1080.Google Scholar
  101. Venner, T. J. and Gupta, R. S. (1990) Nucleotide sequence of mouse HSP60 (chaperonin, GroEL homolog) cDNA, Biochim. Biophys. Acta 1087, 1990.Google Scholar
  102. Viitanen, P. V., Gatenby, A. A. and Lorimer, G. H. (1992) Purified chaperonin ( GroEL) interacts with the nonnative states of a multitude of Escherichia coli proteins, Protein Sci. 1, 363–369.Google Scholar
  103. Vinh, D. B.-N. and Drubin, D. G. (1994) A yeast TCP-1 like protein is required for actin function in vivo, Proc. Natl Acad. Sci. USA 91, 9116–9120.Google Scholar
  104. Warterston, R., Martin, C., Craxton, M., Coulson, A., Hillier, L., Durbin, R., Green, P., Shownkeen, R., Halloran, N., Metzstein, M., Hawkins, T., Wilson, R., Berks, M., Du, Z., Tomas, K., Thierry-Meig, J. and Sulston, J. (1992) A survey of expressed genes in Caenorhabditis elegans, Nature Genetics 1, 114–123.Google Scholar
  105. Weissman, J. S., Kashi, Y., Fenton, W. A. and Horwich, A. L. (1994) GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms, Cell 78, 693 —702.Google Scholar
  106. Willison, K. R., Dudley, K. and Potter, J. (1986) Molecular cloning and sequence analysis of a haploid expressed gene encoding t complex polypeptide 1, Cell 44, 727–738.PubMedGoogle Scholar
  107. Willison, K., Kelly, A., Dudley, K., Goodfellow, P., Spun, N., Groves, V., Gorman, P., Sheer, D. and Trowsdale, J. (1987) The human homologue of the mouse t complex gene, TCP1 is located on chromosome 6 but but not near the ILA region, EMBO J. 6, 1867–1974.Google Scholar
  108. Willison, K., Lewis, V., Zuckerman, K. S., Cordell, J., Dean, C., Miller, K., Lyon, M. F. and Marsh, M. (1989) The t complex polypeptide 1 (TCP-1) is associated with the cytoplasmic aspect of Golgi membranes, Cell 57, 621— 632.Google Scholar
  109. Willison, K. R., Hynes, G., Davies, P., Goldsborough, A. and Lewis, V. A. (1990) Expression of three t-complex genes, Tcp-1, D17Leh117c3 and D17Leh66, in purified murine spermatogenic cell populations, Gen. Res. Camb. 56, 193–201.Google Scholar
  110. Willison, K. R. and Kubota, H. (1994) The structure, function, and Genetics of the chaperonin containing TCP-1 (CCT) in eukaryotic cytosol, in The biology of heat shock proteins and molecular chaperones (Morimoto, R. I., Tissieres, A. and Georgopoulos, C., eds) pp. 299–312, Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY.Google Scholar
  111. Xie, X. and Palacios, R. (1994) Cloning and expression of a new mammalian chaperonin gene from a multipotent hematopoietic progenitor clone, Blood 84, 2171–2174.PubMedGoogle Scholar
  112. Yaffe, M. B., Fan, G. W., Miklos, D., Horwich, A. L., Stemlicht, M. L. and Stemlicht, H. (1992) TCP1 complex is a molecular chaperone in tubulin biogenesis, Nature 358, 245–248.PubMedGoogle Scholar
  113. Yasue, M., Serikawa, T., Kuramoto, T., Mori, M., Higashiguchi, T., Ishizaki, K. and Yamada, J. (1992) Chromosomal assignments of 17 structural genes and 11 related DNA fragments in rats ( Rattus norvegicus) by Southern blot analysis of rat x mouse somatic cell hybrid clones, Genomics 12, 659–664.Google Scholar

Copyright information

© FEBS 1995

Authors and Affiliations

  • Hiroshi Kubota
    • 1
  • Gillian Hynes
    • 1
  • Keith Willison
    • 1
    • 2
  1. 1.Institute of Cancer Research, Chester Beatty LaboratoriesCancer Research Campaign Centre for Cell and Molecular BiologyLondonEngland
  2. 2.Chester Beatty LaboratoriesInstitute of Cancer ResearchLondonEngland

Personalised recommendations