Random Walks on Fractals

  • Armin Bunde
  • Julia Dräger
  • Markus Porto


In this paper we give a brief introduction into the fractal concept and discuss the way the laws of diffusion (mean square displacement as a function of time and spatial decay of the probability density) are modified on random fractal structures. We describe algorithms to generate random fractals and to simulate the diffusion process on these structures. We show how the theoretical predictions can be tested by computer simulations.


Fractal Dimension Random Walker Fractal Structure Bias Field Percolation Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco 1982)MATHGoogle Scholar
  2. [2]
    J. Feder, Fractals (Plenum, New York 1988)MATHGoogle Scholar
  3. [3]
    A. Bunde and S. Havlin, eds., Fractals in Science (Springer, Heidelberg 1994)MATHGoogle Scholar
  4. [4]
    A. Bunde and S. Havlin, eds., Fractals and Disordered Systems, 2nd ed. (Springer, Heidelberg 1996)MATHGoogle Scholar
  5. [5]
    P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, New York 1971)Google Scholar
  6. [6]
    P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca 1979)Google Scholar
  7. [7]
    D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London 1985)CrossRefMATHGoogle Scholar
  8. [8]
    M. Sahimi, Applications of Percolation Theory (Taylor and Francis, London 1994)Google Scholar
  9. [9]
    U.A. Neumann and S. Havlin, J. Stat. Phys. 52, 203 (1988)CrossRefADSGoogle Scholar
  10. [10]
    A. Bunde and J. Dräger, Phil. Mag. B 71, 721 (1995)CrossRefGoogle Scholar
  11. [11]
    A. Bunde and J. Dräger, Phys. Rev. E 52, 53 (1995)CrossRefADSGoogle Scholar
  12. [12]
    S. Alexander and R. Orbach, J. Phys. Lett. 43, L625 (1982)CrossRefGoogle Scholar
  13. [13]
    R. Kopelman, Science 241, 1620 (1988)CrossRefADSGoogle Scholar
  14. [14]
    S. Havlin and D. Ben-Avraham, Adv. in Phys. 36, 695 (1987)CrossRefADSGoogle Scholar
  15. [15]
    A. Bunde, S. Havlin, and H. E. Roman, Phys. Rev. A 42, 6274 (1990)CrossRefADSGoogle Scholar
  16. [16]
    A. Bunde, H.E. Roman, St. Russ, A. Aharony, and A.B. Harris, Phys. Rev. Lett. 69, 3189 (1992)CrossRefADSGoogle Scholar
  17. [17]
    J. Dräger, St. Russ, and A. Bunde, Europhys. Lett. 31, 425 (1995)CrossRefADSGoogle Scholar
  18. [18]
    A. Bunde, S. Havlin, H.E. Stanley, B. Trus, and G.H. Weiss, Phys. Rev. B 34, 8129 (1986)CrossRefADSGoogle Scholar
  19. [19]
    S. Havlin, A. Bunde, H.E. Stanley, and D. Movshovitz, J. Phys. A 19 L693 (1986)CrossRefADSGoogle Scholar
  20. [20]
    A. Bunde, H. Harder, S. Havlin, and H.E. Roman, J. Phys. A 20, L865 (1987)CrossRefADSGoogle Scholar
  21. [21]
    H.E. Roman, M. Schwartz, A. Bunde, and S. Havlin, Europhys. Lett. 7, 389 (1988)CrossRefADSGoogle Scholar
  22. [22]
    J.P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990)CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    P.L. Leath, Phys. Rev. B 14, 5046 (1976)CrossRefADSGoogle Scholar
  24. [24]
    J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3428 (1976)CrossRefADSGoogle Scholar
  25. [25]
    Z. Alexandrowicz, Phys. Lett. A 80, 284 (1980)CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    J.M. Hammersley, Meth. in Comp. Phys. 1, 281 (1963)Google Scholar
  27. [27]
    D. Ben-Avraham and S. Havlin, J. Phys. A 15, L691 (1982)CrossRefADSGoogle Scholar
  28. [28]
    S. Havlin, D. Ben-Avraham, and H. Sompolinsky, Phys. Rev. A 27, 1730 (1983)CrossRefADSGoogle Scholar
  29. [29]
    I. Majid, D. Ben-Avraham, S. Havlin, and H.E. Stanley, Phys. Rev. B 30, 1626 (1984)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Armin Bunde
    • 1
  • Julia Dräger
    • 1
    • 2
  • Markus Porto
    • 1
  1. 1.Institut für Theoretische PhysikJustus-Liebig-Universität GiessenGiessenGermany
  2. 2.I. Institut für Theoretische PhysikUniversität HamburgHamburgGermany

Personalised recommendations