Skip to main content

Summary

Tangential skin traction induces a surface increase by mechanical stretching. At the same time, proliferative changes occur. In the epidermal layer an increased mitotic activity of keratinocytes is observed. In the dermal layer, matrix remodelling is evident. The clinical use of tangential skin traction is presented in a case report.

Zusammenfassung

Durch mechanischen Dehnungsreiz induziert tangentialer Hautzug eine Flächenvermehrung, gleichzeitig werden jedoch auch proliferative Effekte in Gang gesetzt. Im Bereich der Epidermis zeigt sich eine erhöhte Mitoserate der Keratinozyten. Im Bereich der Dermis überwiegen die Vorgänge des Matrixumbaues. Die Möglichkeiten der klinischen Anwendung von tangentialen Hautzugverfahren werden an einem Beispiel erläutert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Austad ED, Thomas SB, Pasyk K (1986) Tissue Expansion: Dividend or Loan? Plast Reconstr Surg 78: 63–67

    PubMed  CAS  Google Scholar 

  2. Bashir AH (1987) Wound Closure by Skin Traction: an Application of Tissue Expansion. Br J Plast Surg 40: 582–587

    PubMed  CAS  Google Scholar 

  3. Böhm HJ, Hierholzer G, Strich R (1994) Dynamische Hautnaht zum Verschluß des Inzisionsdefektes nach Kompartmentspaltung. Akt Traumatol 24: 140–144

    Google Scholar 

  4. Brown IA (1973) A scanning electron microscope study of the effect of uniaxial tension on human skin. Br J Dermatol 89: 383–393

    PubMed  CAS  Google Scholar 

  5. Fleischmann W, Strecker W, Bombelli M, Kinzl L (1993) Vakuumversiegelung zur Behandlung des Weichteilschadens bei offenen Frakturen. Unfallchirurg 96: 488–492

    PubMed  CAS  Google Scholar 

  6. Gibson T, Kenedi RM, Craik JE (1965) The Mobile Micro-Architecture of Dermal Collagen. Br J Surg 52: 764–770

    PubMed  CAS  Google Scholar 

  7. Gibson T, Kenedi RM (1968) Factors affecting the mechanical characteristics of human skin. Proceedings of the Centennial Symposium on Repair and Regeneration. McGraw-Hill, New York

    Google Scholar 

  8. Gniadecka M, Gniadecka R, Serup J, Sondergaard J (1994) Skin Mechanical Properties Present Adaptation to Man’s Upright Position. Acta Derm Venereol (Stockh) 74: 188–190

    CAS  Google Scholar 

  9. Grinnell F (1990) The Activated Keratinocyte: Up Regulation of Cell Adhesion and Migration During Wound Healing. J Trauma 30: 144–149

    Google Scholar 

  10. Harris AK, Stopak D, Wild P (1981) Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290: 249–251

    PubMed  CAS  Google Scholar 

  11. Ilizarov GA (1992) Transosseous Osteosynthesis. Springer-Verlag, Berlin, S 184–215

    Google Scholar 

  12. Inglis R, Windolf J, Pannike A (1993) Corset, Erfahrungen mit einer neuen Methode zum transplantatsparenden Gewebeersatz bei großen Weichteildefekten. Unfallchirurgie 19: 16–26

    Google Scholar 

  13. Jemec GBE, Jemec B, Jemec BIE, Serup J (1990) The Effect of Superficial Hydratation on the Mechanical Properties of Human Skin in Vivo: Implication for Plastic Surgery. Plast Reconstr Surg 85: 100–103

    Google Scholar 

  14. Johnson PE, Kernahan DA, Bauer BS (1988) Dermal and Epidermal Response to Soft-Tissue Expansion in the Pig. Plast Reconstr. Surg 81: 390–395

    Google Scholar 

  15. Kratz G, Lake M, Gidlund M (1994) Insulin like growth factor-1 and -2 and their role in the reepithelialisation of wounds. Scand J Plast Reconstr Hand Surg 28: 107–112

    CAS  Google Scholar 

  16. Meyer M, McGrouther DA (1991) A study relating wound tension to scar morphology in the pre-sternal scar using Langer’s technique. Br J Plast Surg 44: 291–294

    PubMed  CAS  Google Scholar 

  17. Oikarinen A (1994) Aging of the skin connective tissue: how to measure the mechanical and biochemical properties of aging dermis. Photodermatol Photoimmunol Photomed 10: 47–52

    PubMed  CAS  Google Scholar 

  18. Pauwels F (1960) Eine neue Theorie Ober den Einfluß mechanischer Reize auf die Differenzierung der Stützgewebe. X. Beitrag zur funktionellen Anatomie und kausalen Morphologie des Stützapparates. Z Anat Entwicklungsgesch 121: 478–515

    PubMed  CAS  Google Scholar 

  19. Stark HL (1977) Directional Variations in the Extensibility of Human Skin. Br J Plast Surg 30: 105–114

    PubMed  CAS  Google Scholar 

  20. Burke JF, Bondoc CC, Quinby WC (1974) Primary burn excision and immediate grafting: A method shortening illness. J Trauma 14: 389

    PubMed  CAS  Google Scholar 

  21. Heimbach DM, Luterman A, Burke JF et al (1988) Artificial dermis for major burns. A multicenter randomized clinical trial. Ann Surg 208: 313

    PubMed  CAS  Google Scholar 

  22. Thiersch C (1886) Über Hautverpflanzung. Verhandl Dtsch Ges Chir 15: 17

    Google Scholar 

  23. Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell 6: 331

    PubMed  CAS  Google Scholar 

  24. Green H, Kehinde O, Thomas J (1979) Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci USA 76: 5665

    PubMed  CAS  Google Scholar 

  25. Gallico GG, III, O’Connor NE, Compton CC et al (1984) Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl. J Med 311: 448

    PubMed  Google Scholar 

  26. Auböck J, Fritsch P (1987) Epidermal allografts in humans: An unattainable dream? Dermatologica 175: 161

    PubMed  Google Scholar 

  27. Brain A, Purkis P, Coates Pet al (1989) Survival of cultured allogeneic keratinocytes transplanted to deep dermal bed assessed with probe specific for Y chromosome. Brit Med J 298: 917

    PubMed  CAS  Google Scholar 

  28. Burt AM, Pallett CD, Sloane JP et al (1989) Survival of cultured allografts in patients with burns assessed with probe secific for Y chromosome. Brit Med J 298: 915

    PubMed  CAS  Google Scholar 

  29. Hafemann B, Hettich R, Ensslen S, Kowol B, Zühlke A, Ebert R, Königs M, Kirkpatrick CJ (1994) The treatment of skin-defects using suspensions of in vitro cultured keratinocytes. Burns 20: 168

    PubMed  CAS  Google Scholar 

  30. Kaiser HW, Stark GB, Kopp J, Balcerkiewicz A, Spilker G, Kreysel HW (1994) Cultured autologous keratinocytes in fibrin glue suspension, exclusively and combined with STS-allograft (preliminary clinical and histological report of a new technique). Burns 20: 23

    PubMed  CAS  Google Scholar 

  31. Fusening NE (1992) Cell interaction and epithelial differentiation. In: Freshney RI (Ed) Culture of epithelial cells. Wiley-Liss Inc, New York, p 25

    Google Scholar 

  32. Asselineau D, Bernard BA, Bailly C, Darmon M, Pruniéras M (1986) Human epidermis reconstructed by culture: Is it “normal”? J Invest Dermatol 86: 181

    PubMed  CAS  Google Scholar 

  33. Herzog SR, Meyer A, Woodley D, Peterson HD (1988) Wound coverage with autologous keratinocytes: Use after burn wound excision, including biopsy follow-up. J Trauma 28:195 —198

    Google Scholar 

  34. Woodley DT, Briggaman RA, Herzog SR, Meyers AA, Peterson HD, O’Keefe EJ (1990) Characterization of “neo-dermis” formation beneath cultured human epidermal autografts transplanted on muscle fascia. J Invest Dermatol 95: 20

    PubMed  CAS  Google Scholar 

  35. Desai MH, Mlakar JM, McCauley RL, Abdullah KM, Rutan RL, Waymack JP, Robson MC, Herndon DN (1991) Lack of long-term durability of cultured keratinocyte burn-wound coverage: A case report. J Burn Care Rehabil 12: 540

    Google Scholar 

  36. Cuono CB, Langdon R, McGuire J (1986) Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet I: 1123

    Google Scholar 

  37. Hafemann B, Frese C, Kistler D, Hettich R (1989) Intermingled skin grafts with in vitro cultured keratinocytes — experiments with rats. Burns 15: 233

    PubMed  CAS  Google Scholar 

  38. Nave M (1992) Wound bed preparation: Approaches to replacement of dermis. J Burn Care Rehabil 13: 147

    PubMed  CAS  Google Scholar 

  39. Kangesu T, Naysaria HA, Manek S, Fryer PR, Leigh IM, Green CJ (1993) Kerato-dermal grafts: the importance of dermis for the in vivo growth of cultured keratinocytes. Br J Plast Surg 46: 401

    PubMed  CAS  Google Scholar 

  40. Hickerson W, Compton CC, Fletchall S, Smith LR (1994) Cultured epidermal autografts and allodermis combination for permanent burn wound coverage. Burns 20: S52

    PubMed  Google Scholar 

  41. Yannas IV, Burke JF (1980) Design of an artificial skin: I. Basic design principles. J Biomed Mat Res 14: 65

    Google Scholar 

  42. Burke JF, Yannas IV, Quinby WC et al (1981) Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194: 413

    PubMed  CAS  Google Scholar 

  43. Heimbach DM (1987) Early burn excision and grafting. Surg Clin North Am 67: 93

    PubMed  CAS  Google Scholar 

  44. Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T (1981) Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211: 1052–1054

    PubMed  CAS  Google Scholar 

  45. Wassermann D, Schlotterer M, Toulon A et al (1988) Preliminary clinical studies of a biological skin equivalent in burned patients. Burns 14: 326

    CAS  Google Scholar 

  46. Coulomb B, Dubertret L, Merrill C et al (1984) The collagen lattice: a model for studying the physiology, biosynthetic function and pharmacology of the skin. Br J Dermatol 111 (Suppl 27): 83

    PubMed  CAS  Google Scholar 

  47. Wilkins LM, Watson SR, Prosky SJ, Meunier SF, Parenteau NL (1994) Development of a bilayered living skin construct for clinical applications. Biotech Bioeng 43: 747

    CAS  Google Scholar 

  48. Morykwas MJ, Stevenson TR, Marcelo CL, Thornton JW, Smith DJ Jr (1992) In vitro and in vivo testing of a collagen sheet to support keratinocyte growth for use as burn wound dressing. J Trauma 29: 1163

    Google Scholar 

  49. Koruyanagi Y, Ishihara S, Nakakita N, Shioya N (1992) Composite cultured skin composed of fibroblasts and keratinocytes. In: Hinderer UT (Ed) Plastic Surgery. Elsevier, NL, 1: 61

    Google Scholar 

  50. Beumer GJ, van Blitterswijk CA, Bakker D, Ponec M (1992) Cell-seeding and in vitro biocompatibility evaluation of polymeric matrices of PEO/PBT copolymers and PLLA. Biomat 14: 589

    Google Scholar 

  51. Hansbrough JF, Doré C, Hansbrough WB (1992) Clinical trials of a living dermal tissue replacement placed beneath meshed, split-thickness skin grafts on excised burn wounds. J Burn Care Rehabil 13: 519

    PubMed  CAS  Google Scholar 

  52. Nanchahal J, Ward CM (1992) New grafts for old? A review of alternatives to autologous skin. Br J Plast Surg 45: 354

    PubMed  CAS  Google Scholar 

  53. Sher S, Hull BE, Rosen Set al (1983) Acceptance of allogeneic fibroblasts in skin equivalent transplants. Transplantation 36: 552

    PubMed  CAS  Google Scholar 

  54. Hafemann B, Sauren B, Hettich R (1990) A new kind of collagen membrane to be used as longterm skin substitute. In: Planck H, Dauner M, Renardy M (Eds) Medical Textiles for Implantation. Springer-Verlag, Berlin Heidelberg, p 305

    Google Scholar 

  55. Vescovali C, Damour O, Shahabeddin L et al (1989) Epidermalization of an artificial dermis made of collagen. Ann MBC 2: 137

    Google Scholar 

  56. Langer R, Vacanti JP (1993) Tissue engineering. Science 260: 920

    PubMed  CAS  Google Scholar 

  57. Ratner BD (1993) New ideas in biomaterials science — a path to engineered biomaterials. J Biomed Mat Res 27: 837

    CAS  Google Scholar 

  58. Meyle J, Gültig K, Wolburg H, von Recum AF (1993) Fibroblast anchorage to microtextured surfaces. J Biomed Mat Res 27: 1553

    CAS  Google Scholar 

  59. Austad ED, Pasyk KA, McClatchey KD, Cherry GW (1982) Histomorphologic evaluation of gui- nea pig skin and soft tissue after controlled tissue expansion. Plast Reconstr Surg 70: 704–710

    PubMed  CAS  Google Scholar 

  60. Austad ED, Thomas SB, Pasyk K (1986) Tissue expansion: dividend or loan? Plast Reconstr Surg 78: 63–67

    PubMed  CAS  Google Scholar 

  61. Brobmann GF, Huber J (1985) Effects of different-shaped tissue expanders on transluminal pressure, oxygen tension, histopathologic changes, and skin expansion in pigs. Plast Reconstr. Surg 76:731— 736

    Google Scholar 

  62. Cherry GW, Austad ED, Pasyk KA, Rohrich RJ (1983) Increased survival and vascularity of random-pattern skin flaps elevated in controlled expanded skin. Plast Reconstr Surg 72: 680–687

    PubMed  CAS  Google Scholar 

  63. Dorer A, Stark GB (1994) Präfabrikation von Axiallappen und freien Lappen durch Vordehnung mit Gewebeexpandern. In: Zilch H, Schumann D (Hrsg) Plastische und rekonstruktive Maßnahmen bei Knochen-und Weichteildefekten. Thieme-Verlag, Stuttgart, S 180

    Google Scholar 

  64. Leighton WD, Russell RC, Feller AM, Eriksson E, Mathur A, Zook EG (1988) Experimental pre-transfer expansion of free-flap donor sites: II. physiology, histology, an clinical correlation. Plast Reconstr Surg 82: 76–87

    Google Scholar 

  65. Sasaki GH, Pang CY (1984) Pathophysiology of skin flaps raised on expanded skin. Plast Reconstr Surg 74: 59–67

    PubMed  CAS  Google Scholar 

  66. Saxby Pi (1988) Survival of island flaps after tissue expansion: a pig model. Plast Reconstr Surg 81: 30–34

    PubMed  CAS  Google Scholar 

  67. Stark GB, Hong C, Futrell JW (1987) Rapid elongation of arteries and veins in rats with a tissue expander. Plast Reconstr Surg 80: 570–581

    PubMed  CAS  Google Scholar 

  68. Stark GB, Hong C, Futrell JW (1987) Enhanced neovascularization of rat tubed pedicle flaps with low perfusion of the wound margin. Plast Reconstr Surg 80: 814–821

    PubMed  CAS  Google Scholar 

  69. Stark GB, Jaeger K (1989) The failure of tissue expansion in a patient with osteogenesis imperfecta. Ann Plast Surg 22: 156–159

    PubMed  CAS  Google Scholar 

  70. Stark GB, Dorer A, Walgenbach K-J, Grünwald F, Jaeger K (1990) The creation of a small bowel pouch by tissue expansion — an experimental study in pigs. Langenbecks Arch Chir 375:145 —150

    Google Scholar 

  71. Stark GB, Jaeger K (1990) Gewebeexpansion in der Mammarekonstruktion. In: Jaeger K, Giebel GD, Stark GB (Hrsg) Brustrekonstruktion nach Mammakarzinom. Springer-Verlag, Berlin, S 3 —25

    Google Scholar 

  72. Krause W (1863) Über Lymphgefäße in Geschwülsten. Dtsch Klin 15: 377–386

    Google Scholar 

  73. Ritter C (1900) Für Neubildung der Lymphdrüsen. Arch Anat Physiol Anat Abt 300

    Google Scholar 

  74. Bayer C (1885) Über Regeneration und Neubildung der Lymphdrüsen. Z Heilk 6: 105

    Google Scholar 

  75. Talke L (1902) Zur Kenntnis der Lymphgefäßneubildung in pleuritischen Schwarten. Beitr path Anat 32: 106–116

    Google Scholar 

  76. Bier A (1919) Beobachtungen über Regeneration beim Menschen. Dtsch med Wschr 45:1155 —1158

    Google Scholar 

  77. Yong LL (1980) Regeneration of lymphatic vessels in the ear of a guinea pig. J Pathol 131: 209

    PubMed  CAS  Google Scholar 

  78. Walzer LR (1986) Zur Regeneration des Lymphgefäßsystems nach Replantation und Insellappenplastik. Acta Chir Austr 17, Supp1 66

    Google Scholar 

  79. Piza-Katzer H, Partsch H, Urbanek A, Wenzel-Hora BI, Walzer RL (1987) Zur Frage der Lymphgefäßregeneration nach Replantation und freier mikrovaskulärer Lappenplastik. VASA 16, S 60 —66

    Google Scholar 

  80. Bollinger A, persönliche Mitteilung.

    Google Scholar 

  81. Gillies HD, Fraser FR (1935) Treatment of lymphedema by plastic operation. Br Med J 1: 96

    PubMed  CAS  Google Scholar 

  82. Goldsmith HS, de los Santos R, Beattle EJ (1967) Relief of chronic lymphedema by omental transposition. Ann Surg 166: 573

    CAS  Google Scholar 

  83. Kinmonth JB, Hurst PA, Edwards JM, Rutt DL (1978) Relief of lymph obstruction by use of mesentery and ileum. Brit J Surg 65: 829

    PubMed  CAS  Google Scholar 

  84. Danese C, Bower R, Howard J (1962) Experimental Anastomoses of Lymphatics. Arch Surg 84: 29

    Google Scholar 

  85. Baumeister RGH, Seifert J, Wiebecke B, Hahn D (1981) Experimental basis and first application of clinical lymphvessel transplantation of secondary lymphedema. World J Surg 5: 401

    PubMed  CAS  Google Scholar 

  86. Baumeister RG, Siuda S (1990) Treatment of lymphedemas by microsurgical lymphatic grafting: what is proved? Plast Reconstr Surg 85: 64–74

    PubMed  CAS  Google Scholar 

  87. I. Alexander JW, Macmillan BG, Law EJ et al (1981) Treatment of severe burns with widely meshed skin autograft and meshed skin allograft overlay. J Trauma 21: 433–438

    PubMed  CAS  Google Scholar 

  88. Compton C, Langdon R, McGuire J (1986) Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet 1: 1123–1 124

    Google Scholar 

  89. Horch R, Stark GB, Kopp J, Spilker G (1994) Cologne Burn Centre: Clinical experiences and histological findings using glycerol-preserved allogeneic skin (overgraft and sandwich technique). Burns 20: 23–26

    Google Scholar 

  90. Stark GB, Kaiser HW, Kopp J, Horch R (1995) Cultured autologous keratinocytes suspended in fibrin glue to cover burn wounds. In: Schlag G, Holle J (Eds) Plastic surgery Nerve Repair Burns. Springer-Verlag, Berlin Heidelberg New York, pp 143–147

    Google Scholar 

  91. Yang CC, Shih TS, Chu TA et al (1980) The intermingled transplantation of auto-and homografts in severe burns. Burns 6: 141–149

    Google Scholar 

  92. Binnington HB, Tumbleson ME, Ternberg JL (1975) Use of jejunal neomucosa in the treatment of the short gut syndrome in pigs. J Pediatr Surg 10: 617–621

    PubMed  CAS  Google Scholar 

  93. Cywes S (1971) Generation of small bowel mucosa. S Afr Med J 45: 1170–1173

    PubMed  CAS  Google Scholar 

  94. Krammer HJ, Sigge W (1994) GFAP-Immunreaktivität in der Neomukosa des Ileums auf einem Serosa-Patch des Colons beim Hund. Ann Anat 176: 17–21

    PubMed  CAS  Google Scholar 

  95. Sigge W (1991) Untersuchungen zur Vermehrung der Mucosa beim Kurzdarm — eine tierexperimentelle Studie — Habilitationsschrift der Medizinischen Universität zu Lübeck

    Google Scholar 

  96. Sigge W (1992) Effektive Vergrößerung der Resorptionsfläche beim Kurzdarm durch Neomucosa — eine tierexperimentelle Studie. Langenbecks Arch Chir (Suppl) 119–123

    Google Scholar 

  97. Thompson JS, Harty RJ, Saigh JA, Giger DK (1988) Morphologic and nutritional responses to intestinal patching following intestinal resection. Surg 123: 79–86

    Google Scholar 

  98. Faber T (1988) Die Bauchwanderweiterungsplastik mit lösungsmittelgetrockneter Dura in der Neugeborenenchirurgie bei Gastroschisis, Omphalocele und Zwerchfelldefekten. Dissertation der FAU Erlangen

    Google Scholar 

  99. Pesch HJ, Stoß H (1977) Lösungsmittelgetrocknete Dura mater. Chirurg 48: 732–736

    PubMed  CAS  Google Scholar 

  100. Schier F, Srour N, Waldschmidt J (1991) Dura covered with fibrin glue reduces adhesions in abdominal wall defects. Eur J Pediatr Surg 343–345

    Google Scholar 

  101. Smith S, Gantt N, Rowe MI, Lloyd A (1989) Dura versus gore-tex as an abdominal wall prosthesis in an open and closed infected model. J Pediatr Surg 519–521

    Google Scholar 

  102. Stoß H, Pesch HJ (1977) Dura-Transplantation. Fortschritte der Medizin 15: 1018–1021

    Google Scholar 

  103. Eggli PS, Müller W, Schenk RK (1988) Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. Clin Orthop 232: 127–138

    PubMed  CAS  Google Scholar 

  104. Wahlig H, Dingeldein E, Draenert K (1991) Comparison of four different hydroxyapatite ceramics by histomorphological evaluation using a standardized animals model. Transact Combined Meeting Orthop Res Soc, USA, Japan, Canada, p 90.

    Google Scholar 

  105. Schnettler R (1993) Experimentelle Untersuchungen zum Einwachsverhalten von autogenen und allogenen Spongiosatransplantaten im Vergleich zu Keramik, DBM und basischem Fibroblastenwachstumsfaktor (bFGF). Habilitationsschrift, Jena

    Google Scholar 

  106. Aspenberg P, Wang JS (1994) Basic fibroblast growth factor. Dose-and time-dependance in rats. Trans Orthop Res Soc 181.

    Google Scholar 

  107. Meiss L (1986) Untersuchungen der Knochenregeneration in standardisierten Knochendefekten des Göttinger Miniaturschweins nach Auffüllung mit zerkleinerter Corticalis und porösen Phosphat-Keramiken. Habilitationsschrift, Hamburg

    Google Scholar 

  108. Banerjee AK, Chadwick SJD, Peters TJ (1990) Adaptation of jejunal to colonic mucosal autografts in experimentally induced short bowel syndrome. Dig Dis Sci 35: 340–348

    PubMed  CAS  Google Scholar 

  109. Broll R, Eggers R, Zingler M, Bruch HP, Kühnel W (1994) Creation of an ileum pouch by intraluminal expansion. Examinations of morphology, morphometry, cell proliferation kinetics and enzymes. J Surg Res 26, Supplement 1: 66

    Google Scholar 

  110. Grieco GA, Reyes HM, Ostrovsky E (1983) The Role of a Modified Intussuscoption Jejunocolic Valve in Short-Bowel Syndrome. J Ped Surg 18: 354–359

    CAS  Google Scholar 

  111. Feldman EJ, Dowling RH, McNaughton J (1976) Effects of oral versus intravenous nutrition on intestinal adaptation after small bowel resection in dog. Gastroenterology 70: 712–719

    PubMed  CAS  Google Scholar 

  112. Hamer DB, Duthie HL (1972) Pneumoperitoneum in the management of abdominal incisional hernia. Br J Surg 59: 372–377

    PubMed  CAS  Google Scholar 

  113. Heeckt PF, Bauer AJ, Beger HG, Schraut WH (1995) Chirurgische Therapie des Kurzdarmsyndroms. Z Gastroenterol 33: 15–19

    PubMed  CAS  Google Scholar 

  114. Koontz AR (1958) Hernias that have forfeited the right of domicile: Use of pneumoperitoneum as aid in their operative cure. South Med J 51: 165–169

    PubMed  CAS  Google Scholar 

  115. Lillemoe KD, Berry WR, Armon JW, Tai YH, Weichbrod RH (1982) Use of vascularized abdominal wall pedicle flaps to grow small bowel neomucosa. Surgery 91: 293–300

    PubMed  CAS  Google Scholar 

  116. Mason EE (1995) Pneumoperitoneum in giant hernia. In: Nyphus LM, Condon RE (Eds) Hernia. 4th edition, JB Lippincott, Philadelphia, pp 515–524

    Google Scholar 

  117. Moreno IG (1978) The rational treatment of hernias and voluminous chronic eventrations: Preparation with progressive pneumoperitoneum. In: Nyhus LM, Condon RE (Eds) Hernia. 2nd edition, JB Lippincott, Philadelphia, pp 536–560

    Google Scholar 

  118. Nguyen BLT, Thompson JS, Sharp JG (1993) Comparison of techniques for harvesting enterocytes for transplantation. J Surg Res 54:157— 162

    Google Scholar 

  119. Raynor RW, Del Guerico L (1985) Update on the use of pneumoperitoneum prior to the repair of large hernias of the abdominal wall. Surg Gyn Obstet 161: 367–371

    CAS  Google Scholar 

  120. Raynor RR, Del Guerico L (1989) The place for pneumoperitoneum in the repair of massive hernia. World J Surg 13:581 —585

    Google Scholar 

  121. Stacchini A, DiDio L, Primo M, Borelli V, Andretto R (1982) Artificial sphincters as surgical treatment for experimental massive resection of small intestine. Am J Surg 143:721 —726

    Google Scholar 

  122. Stark GB, Dorer A, Walgenbach KJ, Grünwald F, Jaeger K (1990) The creation of a small bowel pouch by tissue expansion — an experimental study in pigs. Langenbecks Arch Chir 375:145 —150

    Google Scholar 

  123. Tait IS, Penny JI, Campbell FC (1995) Does neomucosa induced by small bowel stem cell transplantation have adequate function? Am J Surg 169: 120–125

    PubMed  CAS  Google Scholar 

  124. Thompson JS, Harty RJ, Saigh JA, Giger DK (1988) Morphologic and nutritional responses to intestinal patching following intestinal resection. Surgery 103: 79–86

    PubMed  CAS  Google Scholar 

  125. Williamson RCN, Chir MB (1978) Intestinal Adaptation, Structural, Functional and Cytokinetic Changes. N Engl J Med 298: 1393–1405

    Google Scholar 

  126. Williamson RCN (1978) Intestinal Adaptation, Mechanisms of Control. N Engl J Med 298: 1444–1450

    PubMed  CAS  Google Scholar 

  127. Akerman PA, Cote PM, Yang SQ, McClain C, Nelson S, Bagby G, Diehl AM (1993) Long-term ethanol consumption alters the hepatic response to the regenerative effects of tumor necrosis factor-a. Hepatology 17: 1066–1073

    PubMed  CAS  Google Scholar 

  128. Callea F, Brisigotti M, Fabretti G, Sciot R, Van Eyken P, Favret M (1991) Cirrhosis of the liver — a regenerative process. Digestive Diseases and Sciences 36: 1287–1293

    PubMed  CAS  Google Scholar 

  129. Chamuleau RAFM, Bosman DK (1988) Liver regeneration. Hepatogastroenterol 34: 309–312

    Google Scholar 

  130. Diehl AM, Yang SQ, Cote P, Wand GS (1992) Chronic ethanol consumption disturbs G-protein expression and inhibits cyclic AMP-dependent signaling in regenerating rat liver. Hepatology 16: 1212–1219

    PubMed  CAS  Google Scholar 

  131. Fausto N (1990) Hepatic regeneration. In: Hepatology — a textbook of liver diseases. Saunders, Philadelphia 1: 49–65

    Google Scholar 

  132. Fausto N (1992) Growth factors in liver development, regeneration and carcinogenesis. Progress in Growth Factor Research 3: 219–234

    Google Scholar 

  133. Francavilla A, Carr BI, Starzl TE, Azzarone A, Carrieri G, Zeng Q-H (1992) Effects of Rapamycin on cultured hepatocyte proliferation and gene expression. Hepatology 15: 871–877

    PubMed  CAS  Google Scholar 

  134. Francavilla A, Starzl TE, Barone M, Zeng Q-H, Porter KA, Zeevi A, Markus PM, van den Brink MRM, Todo S (1991) Studies on mechanisms of augmentation of liver regeneration by Cyclosporine and FK 506. Hepatology 14: 140–143

    PubMed  CAS  Google Scholar 

  135. Henne-Bruns D, Ambrass FO, Schmiegelow P, Höhne M, Paul D, Kremer B (1989) Intrasplenic hepatocyte transplantation: evaluation of DNA synthesis and proliferation in auxiliary transplanted cells. Experimental Medicine 189: 295–302

    CAS  Google Scholar 

  136. Higgins GM, Anderson RM (1931) Experimental pathology of the liver. Arch Pathol 12: 186–202

    Google Scholar 

  137. Kim YI, Salvini P, Auxilia F, Caine RY (1988) Effect of Cyclosporin A on hepatocyte proliferation after partial hepatectomy in rats: comparison with standard. J Surg 155: 245–249

    CAS  Google Scholar 

  138. Tanaka N, Yamamoto H, Tatemoto A, Urabe T, Orita K (1993) Regulation of liver regeneration by Interleukin-2 and its inhibitors: Cyclosporine A and FK 506. Int J Immunopharmac 15: 211–218

    CAS  Google Scholar 

  139. Vesey DA, Selden AC, Woodman AC, Hodgson HJF (1992) Effect of in vivo administration of an antibody to epidermal growth factor on the rapid increase in DNA synthesis induced by partial hepatectomy in the rat. Gut 33: 831–835

    PubMed  CAS  Google Scholar 

  140. I. Davies PF, Tripathi SC (1993) Mechanical stress mechanisms and the cell. Circ Res 72: 239–245

    PubMed  CAS  Google Scholar 

  141. Fleischmann W, Becker U, Bischof M, Hoeckstra H (1995) Vacuum sealing: indication, technique, and results. Eur J Orthop Surg Traumatol 5: 37–40

    Google Scholar 

  142. Fleischmann W, Strecker W, Bombelli M, Kinzl L (1993) Vakuumversiegelung zur Behandlung des Weichteilschadens bei offenen Frakturen. Unfallchirurg 96: 488–492

    PubMed  CAS  Google Scholar 

  143. Ilizarov GA (1989) The tensionstress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin Orthopaedics and Related Res 239: 263–285

    Google Scholar 

  144. Morykwas MJ, Argenta LC (1993) Use of negative pressure to increase the rate of granulation tissue formation in chronic open wounds. Federation of American Societies for Experimental Biology, March 28—April 1, New Orleans

    Google Scholar 

  145. Neidlinger-Wilke C, Wilke HJ, Claes L (1994) Cyclic stretching of human osteoblasts affects proliferation and metabolism: A new experimental method and its application. J Orthop Res 12: 70–78

    Google Scholar 

  146. Regan MC, Barbul A (1993) The role of the wound in posttraumatic immune dysfunction. In: Feist, Meakins, Schildberg (Eds) Host Defense Dysfunction in Trauma, Shock and Sepsis. Springer-Verlag, Berl in Heidelberg

    Google Scholar 

  147. Vandenburg HH (1992) Mechanical forces and their second messengers in stimulating cell growth in vitro. Am J Physiol 262: R350 — R355

    Google Scholar 

  148. Beck S, DeGuzmann L, Lee WP, Xu Y, Siegel MW, Amento EP (1993) One Systemic Administration of Transforming Growth Factor-ßl Reverses Age-or Glucocorticoid-Impaired Wound Healing. J Clin Invest 92: 2841–2849

    PubMed  CAS  Google Scholar 

  149. Coerper S, Siegloch E, Köveker G, Starlinger M, Becker HD: Stimulation der Heilung kryoinduzierter Magenulzera durch lokal injiziertes, rekombinantes TGFß-3 im Tiermodell. Langenbecks Archiv für Chirurgie (im Druck)

    Google Scholar 

  150. Falanga V (1992) Growth Factors and Chronic Wounds: The Need to Understand the Microenvironment. Journal of Dermatology 19: 667–672

    PubMed  CAS  Google Scholar 

  151. Folkmann J (1992) Is there a Field of Wound Pharmacology? Ann Surg 215: 1–2

    Google Scholar 

  152. Knighton DR, Ciresi K, Fiegel VD (1990) Stimulation of repair of chronic nonhealing, cutaneous ulcers using platelet-derived wound healing formula. Surg Gynecol Obstet 170: 56–60

    PubMed  CAS  Google Scholar 

  153. Lynch SE, Colvin RB, Antoniades HN (1989) Growth factors in wound healing. Single and synergistic effects on partial thickness porcine skin wounds. J Clin Invest 84: 640–646

    Google Scholar 

  154. Mustoe TA, Pierce GF, Morishima C, Deuel TF (1991) Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model. J Clin Invest 87: 694–703

    PubMed  CAS  Google Scholar 

  155. Pierce GF, Mustoe TA, Altrock BW (1991) Role of platelet-derived growth factor in wound healing. J Cell Biochem 45: 319–326

    PubMed  CAS  Google Scholar 

  156. Pierce GF, Tarpley JE, Yangihara D (1992) Platelet-derived growth factor (BB homodimer), transforming growth factor-pl, and basic fibroblast growth factor in dermal wound healing. Am J Pathol 140:1375 —1388

    Google Scholar 

  157. Pierce GF, Mustoe TA, Lingelbach J, Masakowski R, Griffin GL, Senior RM, Deuel TF (1989) Platelet-derived growth factor and transforming growth factor-ß enhance tissue repair activities by unique mechanisms. J Cell Biol 109: 429–440

    PubMed  CAS  Google Scholar 

  158. Robson MC, Philips LG, Thomason A (1992) Platelet-derived growth factor BB for the treatment of chronic pressure ulcers. Lancet 339: 23–25

    PubMed  CAS  Google Scholar 

  159. Ross R, Raines EW, Bowen-Pope DF (1986) The biology of platelet-derived growth factor. Cell 46: 155–159

    PubMed  CAS  Google Scholar 

  160. Shah M, Foreman DM, Ferguson MW (1992) Control of scarring in adult wounds by neutralizing antibody to transforming growth factor ß. Lancet 339: 213–214

    PubMed  CAS  Google Scholar 

  161. Sporn MD, Roberts AB (1993) A major advance in the use of growth factors to enhance wound healing. J Clin Invest 92: 2565–2566

    PubMed  CAS  Google Scholar 

  162. Steed DL (1995) Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. J Vasc Surg 21: 71–81

    PubMed  CAS  Google Scholar 

  163. Röter A, Brutscher R (1989) Die Ilizarov-Kortikotomie und Segmentverschiebung zur Behandlung großer Tibiadefekte. Op Orth und Traum 2: 80–89

    Google Scholar 

  164. Gordon L, Chiu EJ (1988) Treatment of infected nonunions and segmental defects of the tibia with staged microvascular muscle transplantation and bone grafting. J Bone Joint Surg (Am) 70-A: 377

    Google Scholar 

  165. Anthony JP, Mathes SJ, Alpert BS (1991) The muscle flap in the treatment of chronic lower extremity osteomyelitis: results in patients over 5 years after treatment. Plast Reconstr Surg 88: 311–318

    PubMed  CAS  Google Scholar 

  166. Calhoun JH, Anger DM, Ledbetter BR, Cobos JA, Mader JT (1993) The Ilizarov Fixateur and Polymethylmethacrylate-Antibiotic beads for the Treatment of Infected Deformities. Clin Orthop 295: 13–22

    PubMed  Google Scholar 

  167. Ilizarov GA (1992) Transosseous Osteosynthesis. Springer-Verlag, Berlin Heidelberg New York, S 512

    Google Scholar 

  168. Regazzoni P (1989) Das Ilizarov-Konzept mit einem modularen Rohrfixateursystem. Operat Orthop Traumatol 1: 90–93

    Google Scholar 

  169. Stahl J-P, Heinrichs C, Wagner D, Kunze K (1994) Alternative Verfahren der Kallusdistraktion in der Behandlung posttraumatischer Pseudarthrosen. Langenbecks Arch Chir Suppl, S 927–932

    Google Scholar 

  170. Eyres KS, Bell MJ, Kanis JA (1993) Methods of assessing new bone formation during limb lengthening. J Bone Joint Surg 75 [Br]: 358–364

    CAS  Google Scholar 

  171. Kalender WA (1991) Abschätzung der effektiven Dosis bei Knochenmineralmessung. Fortschr Röntgenstr 155: 149–154

    CAS  Google Scholar 

  172. Pfeil J (1994) Technik der unilateralen Kallusdistraktion an Femur und Tibia. Operative Orthopädie und Traumatologie 6: 1–29

    Google Scholar 

  173. Breitfuß H, Muhr G, Mönning B (1989) Fixateur oder Schraube bei Arthrodesen am oberen Sprunggelenk. Unfallchirurg 92: 245

    PubMed  Google Scholar 

  174. Charnley J (1951) Compression arthrodesis of the ankle and shoulder. J Bone Joint Surg (BR) 40: 633

    Google Scholar 

  175. Ilizarov GA (1992) Transosseous Osteosynthesis. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Claes, L. et al. (1995). Operativ induzierte Gewebeneubildung. In: Hartel, W. (eds) Qualitätssicherung durch Zusammenarbeit in der Chirurgie. Langenbecks Archiv für Chirurgie, vol 1995. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85235-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85235-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60425-9

  • Online ISBN: 978-3-642-85235-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics