Skip to main content

Self Renewal and Differentiation in Primary Avian Hematopoietic Cells: An Alternative to Mammalian in Vitro Models?

  • Conference paper
Molecular Aspects of Myeloid Stem Cell Development

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 211))

  • 142 Accesses

Abstract

Hematopoietic cells are produced throughout the lifetime of an individual from a small set of stem cells found in the bone marrow. The progeny of these stem cells are required (i) to gradually lose multipotency, eventually developing into progenitors committed to a single lineage which then terminally differentiate and (ii) to make decisions regarding the balance between self-renewal (i.e. cell proliferation without detectably entering a differentiation pathway) and terminal differentiation to produce correct numbers of erythroid, myeloid and lymphoid cells. In leukemias and lymphomas, this delicate equilibrium obviously has been disturbed, resulting in an abnormal accumulation of immature cells that are apparently capable of self renewal, although they may be derived of and similar to either multipotent or committed hematopoietic progenitors (for reviews see [1,2]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Keller G (1992) Hematopoietic stem cells. Cuir Opinion in Immunology 4:133–139.

    Article  CAS  Google Scholar 

  2. Sawyers CL, Denny CT, Witte ON (1991) Leukemia and the disruption of normal hematopoiesis. Cell 64:337–50.

    Article  PubMed  CAS  Google Scholar 

  3. Till JE, McCulloch EA (1980) Hematopoietic stem cell differentiation. BiochimBiophys Acta 605:431–459.

    CAS  Google Scholar 

  4. Daley GQ, Van Elten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the p210bcr-abl gene of the Philadelphia chromosome. Science 247:824–830.

    Article  PubMed  CAS  Google Scholar 

  5. Kelliher MA, McLaughlin J, Witte ON, Rosenberg N (1990) Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci USA 87:6649–6653.

    Article  PubMed  CAS  Google Scholar 

  6. Beug H, Mullner EW, Hayman MJ (1994) Insights into erythroid differentiation obtained from studies on avian erythroblastosis virus. Curr Op Cell Biol 6:816–824.

    Article  PubMed  CAS  Google Scholar 

  7. Spangrude GJ, Smith L, Uchida N, Ikuta K, Heimfeld S, Friedman F, Weissman IL (1991) Mouse hematopoietic stem cells. Blood 78:1395–1402.

    PubMed  CAS  Google Scholar 

  8. Sawada K, Krantz SB, Kans JS, Dessypris EN, Sawyer ST, Glick AD, Civin CI (1987) Purification of human erythroid colony forming units and demonstration of specific binding of erythropoietin. J Clin Invest 80:357–366.

    Article  PubMed  CAS  Google Scholar 

  9. Sawada K, Krantz SB, Dai CH, Koury ST, Horn ST, Glick AD, Civin CI (1990) Purification of human blood burst-forming units erythroid and demonstration of the evolution of erythropoietin receptors. J Cell Physiol 142:219–230.

    Article  PubMed  CAS  Google Scholar 

  10. Cotton EW, Means Jr. RT, Cline SM, Krantz SB (1991) Quantitation of insulin-like growth factor-I binding to highly purified human erythroid colony-forming units. Exp Hematol 19:278–281.

    PubMed  CAS  Google Scholar 

  11. Dai CH, Krantz SB, Zsebo KM (1991) Human burst-forming units-erythroid need direct interaction with stem cell factor for further development. Blood 78:2493–2497.

    PubMed  CAS  Google Scholar 

  12. Fibach E, Manor D, Oppenheim A, Rachmilewitz EA (1989) Proliferation and maturation of human erythroid progenitors in liquid culture. Blood 73:100–103.

    PubMed  CAS  Google Scholar 

  13. Dalyot N, Fibach E, Ronchi A, Rachmilewitz EA, Ottolenghi S, Oppenheim A (1993) Erythropoietin triggers a burst of GATA-1 in normal human erythroid cells differntiating in tissue culture. Nucl Acids Res 21:4031–4037.

    Article  PubMed  CAS  Google Scholar 

  14. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp CeU Res 25:585–621.

    Article  Google Scholar 

  15. Schroeder C, Gibson L, Nordstrom C, Beug H (1993) The estrogen receptor cooperates with the TGFα receptor (c-erbB) in regulation of chicken erythroid progenitor self renewal. EMBO J 12: 951–960.

    PubMed  CAS  Google Scholar 

  16. Hayman MJ, Meyer S, Martin F, Steinlein P, Beug H (1993) Self renewal and differentiation of normal avian erythroid progenitor cells: Regulatory roles of the c-erbB/TGFα receptor and the c-kit /SCF receptor. Cell 74:157–169.

    Article  PubMed  CAS  Google Scholar 

  17. Steinlein P, Wessely O, Meyer S, Deiner EM, Hayman MJ, Beug H (1995) Primary, self-renewing erythroid progenitors develop from BFU-E through activation of both tyrosine kinase and steroid hormone receptors. Curr Biol 5:191–204.

    Article  PubMed  CAS  Google Scholar 

  18. Graf T, Beug H (1978) Avian leukemia viruses: interaction with their target cells in vivo and in vitro. Biochim Biophys Acta 516:269–99.

    PubMed  CAS  Google Scholar 

  19. Hayman MJ, Beug H, (1992) Avian erythroblastosis: A model system to study oncogene cooperativity in leukemia. In: Oncogenes in the Development of Leukemia, Imperial Cancer Res. Fund.: London, pp. 53–68.

    Google Scholar 

  20. Beug H, Graf T (1989) Co-operation between viral oncogenes in avian erythroid and myeloid leukaemia. Eur J Clin Invest 19:491–502.

    Article  PubMed  CAS  Google Scholar 

  21. Beug H, von Kirchbach A, Doderlein G, Conscience JF, Graf T (1979) Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell 18:375–390.

    Article  PubMed  CAS  Google Scholar 

  22. Beug H, Leutz A, Kahn P, Graf T (1984) Ts mutants of E26 leukemia virus allow transformed myeloblasts, but not erythroblasts or fibroblasts, to differentiate at the nonpermissive temperature. Cell 39:579–588.

    Article  PubMed  CAS  Google Scholar 

  23. von Weizsacker F, Beug H, Graf T (1986) Temperature-sensitive mutants of MH2 avian leukemia virus that map in the v-mil and the v-myc oncogene respectively. Embo J 5:15217.

    Google Scholar 

  24. Graf T, McNagny K, Brady G, Frampton J (1992) Chicken ℌerythroidℍ cells transformed by the gag-myb-ets encoding E26 leukemia virus are multipotent. Cell 70:201–213.

    Article  PubMed  CAS  Google Scholar 

  25. Kraut N, Frampton J, McNagny K, Graf T (1994) A functional Ets DND-binding domain is required to maintain multipotency of hematopoietic progenitors transformed by Myb-Ets. Genes Dev 8:33–44.

    Article  PubMed  CAS  Google Scholar 

  26. McNiece IK, Langley KE, Zsebo KM (1991) Recombinant human stem cell factor synergized with GM-CSF; G-CSF, 11–3 and Epo to stimulate human progenitor cells of the myeloid and erythroid lineages. Exp Hematol 19:226–231.

    PubMed  CAS  Google Scholar 

  27. Beug H, Dahl R, Steinlein P, Meyer S, Deiner E, Hayman MH (1995) In vitro growth of factor-dependent multipotential cells is induced by the nuclear oncoprotein v-ski. Oncogene in press.

    Google Scholar 

  28. Morrison LE, Boehmelt G, Beug H, Enrietto PJ (1991) Expression of v-rel in a replication competent virus: transformation and biochemical characterization. Oncogene 6:1657–1666.

    PubMed  CAS  Google Scholar 

  29. Beug H, Müller H, Grieser S, Doederlein G, Graf T (1981) Hematopoietic cells transformed in vitro by REVT avian reticuloendotheliosis virus express characteristics of very immature lymphoid cells. Virology 115:295–309.

    Article  PubMed  CAS  Google Scholar 

  30. Boehmelt G, Madruga J, Dorfler P, Briegel K, Schwarz H, Enrietto PJ, Zenke M (1995) Dendritic cell progenitor is transformed by a conditional v-Rel estrogen receptor fusion protein v-RelER. Cell 80: 341–52.

    Article  PubMed  CAS  Google Scholar 

  31. Klinken SP, Nicola NA, Johnson GR (1989) In vitro-derived leukemic erythroid cell lines induced by a raf- and myc-containing retrovirus differentiate in response to erythropoietin. Proc Natl Acad Sci USA 85: 8506–8510.

    Article  Google Scholar 

  32. Metz T, Harris AW, Adams JM (1995) Absence of p53 allows direct immortalization of hematopoietic cells by the myc and raf oncogenes. Cell in press.

    Google Scholar 

  33. Rohme D, (1981) Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo. Proc Natl Acad Sci USA 78:5009–5013.

    Article  PubMed  CAS  Google Scholar 

  34. Kennedy M, Beug H, Wagner EF, Keller G (1992) Factor-dependent erythroid cell lines derived from mice transplanted with hematopoietic cells expressing the v-src oncogene. Blood 79:180–190.

    PubMed  CAS  Google Scholar 

  35. Vennstrom B, Kahn P, Adkins B, Enrietto P, Hayman MJ, Graf T, Luciw P (1984) Transformation of mammalian fibroblasts and macrophages in vitro by a murine retrovirus encoding an avian v-myc oncogene. EMBO J 3:3223–3229.

    PubMed  CAS  Google Scholar 

  36. Rosenberg N, (1994) abl-mediated transformation, immunoglobulin gene rearrangement and arrest of B lymphocyte differentiation. Sem Cancer Biol 5:95–102.

    CAS  Google Scholar 

  37. Li J, D’Andrea A, Lodish H, Baltimore D (1990) Activation of cell growth by binding of Friend spleen focus-forming virus gp55 glycoprotein to the erythropoietin receptor. Nature 343:762–644.

    Article  PubMed  CAS  Google Scholar 

  38. Moreau-Gachelin F, Tavitian A, Tambourin P (1988) Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature 331:277–280.

    Article  PubMed  CAS  Google Scholar 

  39. Munroe I, Peacock J, Benchimol S (1990) Inactivation of the cellular p53 gene is a common feature of Friend virus-induced erythroleukemia: relationship of inactivation to dominant transforming alleles. Mol Cell Biol 10:3307–3313.

    PubMed  CAS  Google Scholar 

  40. Hunter T (1993) Braking the cell cycle. Cell 75:839–841.

    Article  PubMed  CAS  Google Scholar 

  41. Pines J (1994) Arresting developments in cell cycle control. Trends Biochem Sci 19:143–145.

    Article  PubMed  CAS  Google Scholar 

  42. Pereira-Smith OM, Smith J (1988) Genetic analysis of indefinite division in human cells: Identification of four complementation groups. Proc Natl Acad Sci US A 85:6042–6046.

    Article  CAS  Google Scholar 

  43. Ning Y, Weber JL, Killary AM, Ledbetter DH, Smith JR,Pereira-Smith OM (1991) Genetic analysis of indefinite division in human cells: evidence for a cell senescence-related gene(s) on human chromosome 4. Proc Natl Acad Sci USA 88:5635–5639.

    Article  PubMed  CAS  Google Scholar 

  44. Hensler PJ, Annab LA, Barrett JC, Pereira-Smith OM (1994) A gene involved in control of human cellular senescence on human chromosome lq. Mol Cell Biol 14:2291–2297.

    PubMed  CAS  Google Scholar 

  45. Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR (1994) Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211:9098.

    Article  Google Scholar 

  46. Patel VP, Lodish HF (1987) A fibronectin matrix is required for differentiation of murine erythroleukemia cells into reticulocytes. J Cell Biol 105:3105–3118.

    Article  PubMed  CAS  Google Scholar 

  47. Alitalo R (1990) Induced differentiation of K562 leukemia cells: a model for studies of gene expression in early megakaryoblasts. Leuk Res 14:501–514.

    Article  PubMed  CAS  Google Scholar 

  48. Marks PA, Rifkind RA (1989) Induced differentiation of erythroleukemia cells by hexamethylene bisacetamide: a model for cytodifferentiation of transformed cells. Environ Health Perspect 80:181–188.

    Article  PubMed  CAS  Google Scholar 

  49. Tsai S, Bartelmez S, Sitnicka E, Collins SJ (1994) Lymphohematopoietic progenitors immortalized by a retroviral vector harboring a dominant-negative retinoic acid receptor can recapitulate lymphoid, myeloid and erythroid development. Genes Dev 8:2831–2844.

    Article  PubMed  CAS  Google Scholar 

  50. Ulrich E, Boehmelt G, Bird A, Beug H (1992) Immortalization of conditionally transformed chicken cells: loss of normal p53 expression is an early step that is independent of cell transformation. Genes Dev 6:876–887.

    Article  PubMed  CAS  Google Scholar 

  51. Beug H, Doederlein G, Freudenstein C, Graf T (1982) Erythroblast cell lines transformed by a temperature-sensitive mutant of avian erythroblastosis virus: a model system to study erythroid differentiation in vitro. J Cell Physiol Suppl 1:195–207.

    Article  PubMed  CAS  Google Scholar 

  52. Marks P, Rifkind R (1978) Erythroleukemic cell differentiation. Annu Rev Biochem 47:419–448.

    Article  PubMed  CAS  Google Scholar 

  53. Visvader JE, Crossley M, Hill J, Orkin SH, Adams JM (1995) The C-terminal zinc finger of GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentiation of an early myeloid cell line. Mol Cell Biol 15:634–641.

    PubMed  CAS  Google Scholar 

  54. Kulessa H, Frampton J, Graf T (1995) GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts and erythroblasts. Genes Dev 9:1250–1262.

    Article  PubMed  CAS  Google Scholar 

  55. Beug H, Bartunek P, Steinlein P, Hayman MJ (1995), Avian hematopoietic cell culture: In vitro model systems to study the oncogenic transformation of hematopoietic cells. Methods in Enzymology., Academic Press Inc.: New York and London, in press.

    Google Scholar 

  56. Steinlein P, Deiner EM, Leutz A, Beug H (1994) Recombinant murine erythropoietin receptor expressed in avian progenitors mediates terminal erythroid differentiation in vitro. Growth Factors 10:1–16.

    Article  PubMed  CAS  Google Scholar 

  57. Greider CW (1994) Mammalian telomere dynamics: healing, fragmentation shortening and stabilization. Curr Opin Genet Dev 4:203–211.

    Article  PubMed  CAS  Google Scholar 

  58. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL,Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015.

    CAS  Google Scholar 

  59. Nilsson P, Mehle C, Remes K, Roos G (1994) Telomerase activity in vivo in human malignant hematopoietic cells. Oncogene 9:3043–3048.

    PubMed  CAS  Google Scholar 

  60. Mantell LL, Greider CW (1994) Telomerase activity in germline and embryonic cells of Xenopus. EMBO J 13:3211–3217.

    PubMed  CAS  Google Scholar 

  61. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beug, H., Metz, T., Müllner, E.W., Hayman, M.J. (1996). Self Renewal and Differentiation in Primary Avian Hematopoietic Cells: An Alternative to Mammalian in Vitro Models?. In: Wolff, L., Perkins, A.S. (eds) Molecular Aspects of Myeloid Stem Cell Development. Current Topics in Microbiology and Immunology, vol 211. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85232-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85232-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85234-3

  • Online ISBN: 978-3-642-85232-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics