Detection of Silicone Migration and Biodegradation with NMR

  • L. Garrido
  • A. Bogdanova
  • L. L. Cheng
  • B. Pfleiderer
  • E. Tokareva
  • J. L. Ackerman
  • T. J. Brady
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 210)


Silicones, generic name of synthetic polymers with a backbone of SiO bonds and organic side groups (aliphatic and/or aromatic), are among the most widely used materials for biomedical purposes [1]. In particular, it is estimated that about 1.5 million silicone gel-filled breast prosthesis are presently implanted in the U.S. for the purpose of reconstruction and augmentation mammaplasty. Although silicones have been assumed to be stable, their benign nature has been questioned recently, and in April 1992 the Food and Drug Administration (FDA) severely restricted the use of silicone gel-filled prostheses for breast augmentation arguing that the risks have not been adequately defined [2].


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy Breast Implant Silicone Implant Silicone Breast Implant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van Noort R, Black MM (1981) Silicone rubbers for medical applications. In Williams DF (ed) Biocompatibility of clinical implant materials. CRC Press, Boca Raton, pp 79–98.Google Scholar
  2. 2.
    Kessler DA (1992) The basis for the FDA’s decision on breast implants. N Eng J Med 326:1713–1715.CrossRefGoogle Scholar
  3. 3.
    Picha GJ, Goldstein JA (1991) Analysis of the soft-tissue response to components used in the manufacture of breast implants: rat animal model. Plas Reconstr Surg 87:490–500.CrossRefGoogle Scholar
  4. 4.
    LeVier RR, Harrison MC, Cook RR, Lane TH (1993) What is silicone? Plas Reconstr Surg 163–167Google Scholar
  5. 5.
    Truong LD, Cartwright J, Goodman MD, Woznicki D (1988) Silicone lymphadenopathy associated with augmentation mammaplasty. Am J Surg Pathol 12:484–491.PubMedCrossRefGoogle Scholar
  6. 6.
    McGrath MH, Burkhardt BR (1984) The safety and efficacy of breast implants for augmentation mammaplasty. Plast Reconstr Surg 74:550–560.PubMedCrossRefGoogle Scholar
  7. 7.
    Angell M (1992) Breast implants-protection of paternalism? N Eng J Med 326:1695–1696.CrossRefGoogle Scholar
  8. 8.
    de Camara DL, Sheridan JM, Kammer BA (1993) Rupture and aging of silicone gel breast implants. Plast Reconstr Surg 91:828–834.PubMedCrossRefGoogle Scholar
  9. 9.
    Weiner SR, Paulus HE (1986) Chronic arthropapthy occuring after augmentation mammoplasty. Plast Reconstr Surg 77:185–192.PubMedCrossRefGoogle Scholar
  10. 10.
    Endo LP, Edwards NL, Longley S, Corman LC, Panush RS (1987) Silicone and rheumatic diseases. Semin Arthritis Rheum 17:112–118.PubMedCrossRefGoogle Scholar
  11. 11.
    Brozena SJ, Fenske NA, Cruse CW, Espinoza CG, Vasey FB, Germain BF, et al (1988) Human adjuvant disease following augmentation mammoplasty. Arch Dermatol 124:1383–1386.PubMedCrossRefGoogle Scholar
  12. 12.
    Varga J, Shumacher HR, Jimenez SA (1989) Systemic sclerosis after augmentation mammoplasty with silicone implants. Ann Intern Med 111:377–383.PubMedGoogle Scholar
  13. 13.
    Sahn EE, Garen PD, Silver RM, Maize JC (1990) Scleroderma following augmentation mammoplasty. Arch Dermatol 126:1198–1202.PubMedCrossRefGoogle Scholar
  14. 14.
    Bridges AJ, Conley C, Wang G, Burns DE, Vasey FB (1993) A clinical and immunologic evaluation of women with silicone breast implants and symptoms of rheumatic disease. Ann Inter Med 118:929–936.Google Scholar
  15. 15.
    Fiala TGS, Lee WPA, May JW Jr (1993) Augmentation mammoplasty: results of a patient survey. Ann Plast Surg 30:503–509.PubMedCrossRefGoogle Scholar
  16. 16.
    Sanchéz-Guerrero J, Schur PH, Sergent JS, Liang MH (1993) Silicone breast implants and rheumatic disease. J Arthritis Rheum 37:158–168.CrossRefGoogle Scholar
  17. 17.
    Gabriel SE, O’Fallon WM, Kurland LT, Beard CM, Woods JE, Melton LJ (1994) Risk of connective-tissue diseases and other disorders after breast implantation. New Engl J Med 330:1697–1702.PubMedCrossRefGoogle Scholar
  18. 18.
    Heggers JP, Kossovsky N, Parsons RW, Robson MC, Pelley RP, Raine TJ (1983) Biocompatibility of silicone implants. Ann Plast Surg 11:38–45.PubMedCrossRefGoogle Scholar
  19. 19.
    Thomsen JL, Christensen L, Nielsen M, Brandt B, Breiting VB, Felby S, Nielsen E (1990) Histologic changes and silicone concentrations in human breast tissue surrounding silicone breast prostheses. Plast Reconstr Surg 85:38–41.PubMedCrossRefGoogle Scholar
  20. 20.
    Gutierrez FJ, Espinoza LR (1990) Progressive systemic sclerosis complicated by severe hypertension: reversal after silicone implant removal. Am J Med 89:390–392.PubMedCrossRefGoogle Scholar
  21. 21.
    Komoroski RA (ed) (1986) High resolution nmr spectroscopy of synthetic polymers in bulk, Deerfield, FL.Google Scholar
  22. 22.
    Koenig JL (ed) (1991) Spectroscopy of polymers, ACS Publications, Washington, D.C.Google Scholar
  23. 23.
    Garrido L, Pfleiderer B, Ackerman JL (1993) Migration and biodegradation of free silicone from silicone gel-filled implants after long-term implantation. Mag Reson Med 30:534–543.CrossRefGoogle Scholar
  24. 24.
    Garrido L, Pfleiderer B, Jenkins BJ, Hulka CA, Kopans DB (1994) Migration and chemical modification of silicone in women with breast prostheses. Mag Reson Med 31:328–330.CrossRefGoogle Scholar
  25. 25.
    Pfleiderer B, Garrido L (1995) Migration and accumulation of silicone in the liver of women with silicone gel-filled breast implants. Mag Reson Med 33:8–17.CrossRefGoogle Scholar
  26. 26.
    Garrido L, Pfleiderer B, Papisov M, Ackerman JL (1993) In vivo degradation of silicones. Mag Reson Med 29:839–843.CrossRefGoogle Scholar
  27. 27.
    Djeu JL (1992) Monocyte/macrophage functions. In: Rose NR, de Macario EC, Fahey JL, Friedman H, Penn GM (eds) Manual of clinical laboratory immunology. 4th Ed. American Society for Microbiology, Washington, D.C. pp 231–235.Google Scholar
  28. 28.
    Marsmann H (1981) 29Si NMR spectroscopic results. In: Diehl P, Ruck E, Kosfeld R (eds) Oxygen-17 and Silicon-29. NMR, basic principles and progress. Springer-Verlag, New York, v 17, pp 65–235.Google Scholar
  29. 29.
    Touchette N (1992) Silicone implants and autoimmune disease: studies fail to gel. J NIH Research 4(5):49–52.Google Scholar
  30. 30.
    Vondrácek P, Gent AN (1982) Slow decomposition of silicone rubber. J Appl Polym Sci 27:4517–4523.CrossRefGoogle Scholar
  31. 31.
    Lehmann RG, Varaprath S, Frye CL (1994) Degradation of silicone polymers in soil. Environ Toxicol Chem 13:1061–1064.CrossRefGoogle Scholar
  32. 32.
    Peters W, Smith D, Lugowski S, McHugh A, Baines C. (1995) Do patients with silicone-gel breast implants have elevated leves of blood silicon compared with control patients? Annals Plast Surg 34:343–347.CrossRefGoogle Scholar
  33. 33.
    Roberts NB, Williams DP (1990) Silicon measurement in serum and urine by direct current plasma emission spectrometry. Clin Chem 36:1460–1465.PubMedGoogle Scholar
  34. 34.
    Teuber SS, Saunders RL, Halpern GM, Brucker RF, Conte V, Goldman BD, Winger EE, Wood WG (1995) Serum silicon levels in women with silicone gel breast implants. Biol Trace Elem Res 48:000–000.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • L. Garrido
    • 1
  • A. Bogdanova
    • 1
  • L. L. Cheng
    • 1
  • B. Pfleiderer
    • 1
  • E. Tokareva
    • 1
  • J. L. Ackerman
    • 1
  • T. J. Brady
    • 1
  1. 1.NMR Center, Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolCharlestownUSA

Personalised recommendations