Skip to main content

Molecular and Cellular Bases of Salmonella Entry into Host Cells

  • Chapter
Bacterial Invasiveness

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 209))

Abstract

Salmonella spp. are facultative intracelluiar pathogens capable of causing disease in a great variety of animal species, including human beings (HOOK 1990). Some Salmonella serotypes are highly adapted to a specific host (e.g., S. typhi and S. gallinarum can infect only human beings and poultry, respectively) or preferentially infect one species (e.g., S. choleraesuis and S. dublin preferentially infect swine and cattle, respectively). In contrast, other serotypes can infect a broad range of hosts (e.g., S. enteritidis). The molecular bases for host adaptation are poorly understood. The type of disease caused by these microorganisms depends not only on the Salmonella serotype but also on the species and immunological status of the infected host. In human beings, the clinical manifestations of salmonellosis range from severe systemic infection to mild gastroenteritis. A common feature of the pathogenesis of all Salmonellae is their ability to gain access to cells that are normally nonphagocytic. This includes not only the cells of the intestinal epithelium, these organisms’ port of entry, but also other cells that may constitute “safe sites” for Salmonellae at later stages of their pathogenic cycle (TAKEUCHI 1967; LIN et al. 1987; CONLAN and NORTH 1992; DUNLAP et al. 1992; VERJAN et al. 1994). Although the actual mechanisms of Salmonella entry are not fully understood, work in a number of laboratories is beginning to provide some insights into this intricate process. In this chapter, the molecular and cellular bases of Salmonella entry into non-phagocytic cells will be reviewed. Most of the information available has been derived from the use of in vitro systems. However, there is enough in vivo evidence that indicates that the molecular genetic bases and mechanistic principles derived from these studies are highly relevant to the natural infection process (GALÁN and CURTISS III 1989; JONES and FALKOW 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleekseev PA, Berman Ml, Korneeva EP (1960) Clinical and histological picture of Salmonella typhimurium infection in children. J Microbiol Epidemiol Immunobiol 31:133–139

    Google Scholar 

  • Altmeyer RM, McNern JK, Bossio JC, Rosenshine I, Finlay BB, Galán JE (1993) Cloning and molecular characterization of a gene involved in Salmonella adherence and invasion of cultured epithelial cells. Mol Microbiol 7:89–98

    Article  PubMed  CAS  Google Scholar 

  • Bar-Sagi D, Ferasmico JR (1986) Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by the ras proteins. Science 233:1061–1068

    Article  PubMed  CAS  Google Scholar 

  • Behlau I, Miller SJ (1993) A Pho-P-repressed gene promotes Salmonella typhimurium invasion of epithelial cells. J Bacteriol 175:4475–4484

    PubMed  CAS  Google Scholar 

  • Betts J, Finlay BB (1992) Identification of Salmonella typhimurium invasiveness loci. Can. J Microbiol 38:852–857

    Article  PubMed  CAS  Google Scholar 

  • Brown DD, Ross JG, Smith AFG (1976) Experimental infections of sheep with Salmonella typhimurium. Res Vet Sci 21:335–340

    PubMed  CAS  Google Scholar 

  • Buchdunger E, Trinks U, Mett H, Regenass U, Müller M, Meyer T, McGlynn E, Pinna LA, Traxler P, Lydon NB (1994) 4,5-Dianilinophthalimide:a protein-tyrosine inhibitor with selectivity for the epidermal growth factor receptor signal transduction pathway and potent in vivo antitumor activity. Proc Natl Acad Sci USA 91:2334–2338

    Article  PubMed  CAS  Google Scholar 

  • Buckholm G (1984) Effect of cytochalasin B and dihidrocytochalasin B on invasiveness of enteroinvasive bacteria in Hep-2 cell cultures. Acta pathol Microbiol Immunol Scand 92:145–149

    Google Scholar 

  • Carter P, Collins F (1974) The route of enteric infection in normal mice. J Exp Med 139:1189–1203

    Article  PubMed  CAS  Google Scholar 

  • CDC (1993) Outbreaks of Salmonella enteritidisCalifornia 1993. MMWR 42:793–797

    Google Scholar 

  • Chalker RB, Blaser MJ (1988) A review of human salmonellosis. III. Magnitude of Salmonella infections in the United States. Rev Infect Dis 10:111–124

    CAS  Google Scholar 

  • Chen L-M, Pace J, Galán JE (1995) Common components in the signaling pathways triggered by Salmonella typhimurium in different cell lines. Infect Immun (submitted)

    Google Scholar 

  • Chuan T-H, Bohl BP, Bokoch GM (1993) Biologically active lipids are regulators of Rac-GDI complexation. J Biol Chem 268:26206–26211

    Google Scholar 

  • Collazo CM, Galán JE (1995) Functional analysis of the spa locus of Salmonella typhimurium. Infect Immun (submitted)

    Google Scholar 

  • Collazo CM, Zierler MK, Galán JE (1995) Functional analysis of the Salmonella typhimurium invasion genes invl and invJ and identification of a target of the protein secretion apparatus encoded in the inv locus. Mol Microbiol 15:25–38

    Article  PubMed  CAS  Google Scholar 

  • Conlan JW, North RJ (1992) Early pathogenesis of infection in the liver with the facultative intracellular bacteria Listeria monocytogenes, Francisella tularensis, and Salmonella typhimurium involves lysis of infected hepatocytes of leukocytes. Infect Immun 60:5164–5171

    PubMed  CAS  Google Scholar 

  • Comelis G, Sluiters C, de Rouvrait CL, Michiels T (1989) Homology between VirF, the transcriptional activator of the Yersinia virulence regulon, and AraC, the Escherichia coli arabinose operon regulator. J Bacteriol 171:254–262

    Google Scholar 

  • Donnenberg MS, Yu J, Kaper JB (1993) A second chromosomal gene necessary for intimate attachment of enteropathogenic Escherichia coli to epithelial cells. J Bacteriol 175:4670–4680

    PubMed  CAS  Google Scholar 

  • Dorman CJ, NiBhriain N, Higgins CF (1990) DNA supereoiling and environmental regulation of virulence gene expression in Shigella flexneri. Nature 344:789–792

    Article  PubMed  CAS  Google Scholar 

  • Dreyfus G, Williams AW, Kawagishi I, Macnab RM (1993) Genetic and biochemical analysis of Salmonella typhimurium Fil, a flagellar protein related to the catalytic subunit of the F0F1, ATPase and to virulence proteins of mammalian and plant pathogens. J Bacteriol 175:3131–3138

    PubMed  CAS  Google Scholar 

  • Dunlap NE, Benjamin W Jr., Berry AK, Eldridge JH, Briles DE (1992) A’ safe-site’ for Salmonella typhimurium is within splenic polymorphonuclear cells. Microb Pathog 13:181–190

    Article  PubMed  CAS  Google Scholar 

  • Eichelberg K, Ginocchio C, Galán JE (1994) Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC:homology of InvCto the F0F1 ATPase family of proteins. J Bacteriol 176:4501–4510

    PubMed  CAS  Google Scholar 

  • Elsinghorst EA, Baron LS, Kopecko DJ (1989) Penetration of human intestinal epithelial cells by Salmonella molecular cloning and expression of Salmonella typhi invasion determinants in Escherichia coli. Proc Natl Acad Sci USA 86:5173–5177

    Article  PubMed  CAS  Google Scholar 

  • Ernst RK, Domboski DM, Merrick JM (1990) Anaerobiosis, type 1 fimbriae, and growth phase are factors that affect invasion of Hep-2 cells by Salmonella typhimurium. Infect Immun 58:2014–2016

    PubMed  CAS  Google Scholar 

  • Finlay BB, Gumbiner B, Falkow W (1988a) Penetration of Salmonella through a polarized Madin-Darby canine kidney epithelial cell monolayer. J Cell Biol 107:221–230

    Article  PubMed  CAS  Google Scholar 

  • Finlay BB, Stambach MN, Francis CL, Stocker BAD, Chatfield S, Dougan G, Falkow S (1988b) Identification and characterization of TnphoA mutants of Salmonella that are unable to pass through a polarized MDCK epithelial cell monolayer. Mol Microbiol 2:757–766

    Article  PubMed  CAS  Google Scholar 

  • Finlay BB, Ruschkowski S (1991) Cytoskeletal rearrangements accompanying Salmonella entry into epithelial cells. J Cell Sci 99:283–296

    PubMed  Google Scholar 

  • Forsberg A, Vitanen AM, Skurnik M, Wolf-Watz H (1991) The surface-located YpoN protein is involved in calcicm signal transduction in Yersinia pseudotuberculosis. Mol Microbiol 5:977–986

    Article  PubMed  CAS  Google Scholar 

  • Francis, CL, Ryan TA, Jones BD, Smith SJ, Falkow S (1993) Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 364:639–642

    Article  PubMed  CAS  Google Scholar 

  • Gahring LC, Heffron F, Finlay BB, Falkow S (1990) Invasion and replication of Salmonella typhimurium in animal cells. Infect Immun 58:443–448

    PubMed  CAS  Google Scholar 

  • Galán JE (1994) Salmonella entry into mammalian cells:different yet converging signal transduction pathways? Trends Cell Bio 4:196–199

    Google Scholar 

  • Galán JE, Curtiss R III (1989) Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA 86:6383–6387

    Article  PubMed  Google Scholar 

  • Galán JE, Curtiss R III (1990) Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supereoiling. Infect Immun 58:1879–1885

    PubMed  Google Scholar 

  • Galán JE, Curtiss R III (1991) Distribution of the invA,-B,-C and-D genes of Salmonella typhimurium among other Salmonella serovars:invA mutants of Salmonella typhimurium are deficient for entry into mammalian cells. Infect Immun 59:2901–2908

    PubMed  Google Scholar 

  • Galan JE, Ginocchio C, Costeas P (1992a) Molecular and functional characterization of the Salmonella typhimurium invasion gene invA homology of InvA to members of a new protein family. J Bacteriol 17:4338–4349

    Google Scholar 

  • Galán JE, Pace J, Hayman MJ (1992b) Involvement of the epidermal growth factor receptor in the invasion of the epithelial cells by Salmonella typhimurium. Nature 357:588–589

    Article  PubMed  Google Scholar 

  • Garciadel Portillo F, Finlay BB (1994) Salmonella invasion of nonphagocytic cells induces formation of macropinosomes in the host cell. Infect Immun 62:4641–4645

    CAS  Google Scholar 

  • Ginocchio C, Galán JE (1995) Functional conservation among members of the Salmonella typhimurium InvA family of proteins. Infect Immun 63:729–732

    PubMed  CAS  Google Scholar 

  • Ginocchio C, Olmsted SB, Wells CL, Galán JE (1994) Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium. Cell 76:717–724

    Article  PubMed  CAS  Google Scholar 

  • Ginocchio C, Pace J, Gal #x00E1;n JE (1992) Identification and molecular characterization of a Salmonella typhimurium gene involved in triggering the intemalization of Salmonellae into cultured epithelial cells. Proc Natl Acad Sci USA 89:5976–5980

    Article  PubMed  CAS  Google Scholar 

  • Ginocchio C, Rahn K, Clark RC, Galán JE (1995) Naturally occurring deletions in the inv locus of environmental isolates of S. seftenberg and S. litchfield. Infect Immun (submitted)

    Google Scholar 

  • Gonzalez FA, Seth A, Raden DL, Bowman DS, Fay FS, Davis RJ (1993) Serum-induced translocation of mitogen-activated protein kinase to the cell surface ruffling membrane and the nucleus. J Cell Biol 122:1089–1101

    Article  PubMed  CAS  Google Scholar 

  • Groisman EA, Ochman H (1993) Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J 12:3779–3787

    PubMed  CAS  Google Scholar 

  • Groisman EA, Sturmoski MA, Solomon FR, Lin R, Ochman H (1993) Molecular, functional, and evolutionary analysis of sequences specific to Salmonella. Proc Natl Acad Sci USA 90:1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Han JW, McCormick FF Macara IG (1991) Regulation of Ras-Gap and neurofibromatosis-1 gene product by eicosanoids. Science 252:576–579

    Article  PubMed  CAS  Google Scholar 

  • He SY, Huang H-C, Collmer A (1993) Pseudomonas syringae pv. syringae HarpinPss:a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73:1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Higgins CF, Dorman CJ, Stirling DA, Waddell L, Booth IR, May G, Bremer E (1988) A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52:569–584

    CAS  Google Scholar 

  • Hohmann AW, Schmidt G, Rowley D (1978) Intestinal colonization and virulence of Salmonella in mice. Infect Immun 22:763–770

    PubMed  CAS  Google Scholar 

  • Hook EW (1990) Salmonella species (including typhoid fever). In: Mandell GL (eds) Principles and practice of infectious diseases. Wiley, New York

    Google Scholar 

  • Jones BD, Falkow S (1994) Identification and characterization of a Salmonella typhimurium oxygenregulated gene required for bacterial intemalization. Infect Immun 62:3745–3752

    PubMed  CAS  Google Scholar 

  • Jones GW, Richardson LA, Uhlman D (1981) The invasion of HeLa cells by Salmonella typhimurium reversible and irreversible bacterial attachment and the role of bacterial motility. J Gen.Microbiol 127:351–360

    PubMed  CAS  Google Scholar 

  • Jones BD, Lee CA, Falkow S (1992) Invasion by Salmonella typhimurium is affected by the direction of flagellar rotation. Infect Immun 60:2475–2480

    PubMed  CAS  Google Scholar 

  • Jones BD, Paterson HF, Hall A, Falkow S (1993) Salmonella typhimurium induces membrane ruffling by a growth factor-receptor-independent mechanism. Proc Natl Acad Sci USA 90:10390–10394

    Article  PubMed  CAS  Google Scholar 

  • Jones BD, Ghori N, Falkow S (1994) Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J Exp Med 180:15–23

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki T, Koyasu S, Nishida E, Sakai H, Takaku F, Yahara I, Kasuga M (1986) Insulin-like growth factors, insulin, and epidermal growth factor cause rapid cytoskeletal reorganization in KB cells. J Biol Chem 261:16141–16147

    PubMed  CAS  Google Scholar 

  • Kaniga K, Bossio JC, Galán JE (1994) The Salmonella typhimurium invasion genes invF and invG encode homologues to the PulD and AraC family of proteins. Mol Microbiol 13:555–568

    Article  PubMed  CAS  Google Scholar 

  • Kaniga K, Tucker SC, Galán JE (1995) Homologues of the Shigella invasions IpaB and IpaC are required for Salmonella typhimurium entry into cultured cells. J Bacteriol (in press)

    Google Scholar 

  • Kent TH, Formal SB, Labrec EH (1966) Salmonella gastroenteritis in rhesus monkeys. Arch Pathol 82:272–279

    PubMed  CAS  Google Scholar 

  • Khoramian-Falsafi T, Harayama S, Kutsukake K, Pechere JC (1990) Effect of motility and chemotaxis on the invasion of Salmonella typhimurium into HeLa cells. Microb Pathog 9:47–53

    Article  PubMed  CAS  Google Scholar 

  • Kihlstrom E, Edebo L (1976) Association of viable and inactivated Salmonella typhimurium 395 MS and MR 10 with HeLa cells. Infect Immun 14:851–857

    PubMed  CAS  Google Scholar 

  • Kihlstrom E, Nilsson L (1977) Endocytosis of Salmonella typhimurium 395 MS and MR 10 by HeLa cells. Acta pathol Microbiol Scand 85:322–328

    Google Scholar 

  • Kohbata S, Yokoyama H, Yabuuchi E (1986) Cytopathogenic effect of Salmonella typhi GIFU 10007 on M cells of murine ileal Peyer’s patches in ligated ileal loops:an ultrastructural study. Microbiol Immunol 30:1225–1237

    PubMed  CAS  Google Scholar 

  • Lee CA, Falkow S (1990) The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc Natl Acad Sci USA 87:4304–4308

    Article  PubMed  CAS  Google Scholar 

  • Lee CA, Jones BD, Falkow S (1992) Identification of a Salmonella typhimurium invasion locus by selection of hyperinvasive mutants. Proc Natl Acad Sci USA 89:1847–1851

    Article  PubMed  CAS  Google Scholar 

  • Levine WC, Buehler JW, Bean NH, Tauxe RV (1991) Epidemiology of nontyphoidal Salmonella bacteremia during the human immunodeficiency virus epidemic. J Infect Dis 164:81–87

    Article  PubMed  CAS  Google Scholar 

  • Lin F-R, Wang X-M, Hsu HS, Mumaw VR, Nakoneczna I (1987) Electron microscopic studies on the location of bacterial proliferation in the liver in the murine salmonellosis. Br J Exp Pathol 68:539–550

    PubMed  CAS  Google Scholar 

  • Liu SL, Ezaki T, Miura H, Matsui K, Yabuuchi E (1988) Intact motility as a Salmonella typhi invasion-related factor. Infect Immun 56:1967–1973

    PubMed  CAS  Google Scholar 

  • Lockman HA, Curtiss III R (1990) Salmonella typhimurium mutants lacking flagella or motility remain virulent in BALB/c mice. Infect Immun 58:137–143

    PubMed  CAS  Google Scholar 

  • Macbeth KJ, Lee CA (1993) Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion. Infect Immun 61:1544–1546

    PubMed  CAS  Google Scholar 

  • McCormick BA, Colgan SP, Delp-Archer C, Miller SI, Madara JL (1993) Salmonella typhimurium attachment to human intestinal epithelial monolayers:transcellular signalling to subepithelial neutrophils. J Cell Biol 123:895–907

    Article  PubMed  CAS  Google Scholar 

  • McGovern VJ, Slavutin LJ (1979) Pathology of Salmonella colitis. Am J Surg Pathol 3:483–490

    Article  PubMed  CAS  Google Scholar 

  • Ménard R, Sansonetti PJ, Parsot C, Vasselon T (1994) The IpaB and IpaC invasins of Shigella flexneri associate in the extracellular medium and are partitioned in the cytoplasm by a specific chaperon. Cell 76:829–839

    Article  Google Scholar 

  • Mills DB, Bajaj V, Lee CA (1995) A 40 kilobase chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 chromosome. Mol Microbiol (in press)

    Google Scholar 

  • Mounier J, Vasselon T, Hellio R, Lesourd M, Sansonetti PJ (1992) Shigella flexneri enters human colonie Caco-2 epithelial cells through the basolateral pole. Infect Immun 60:237–248

    PubMed  CAS  Google Scholar 

  • Mroczenski-Wildey MJ, Di Fabio JL, Cabello FC (1989) Invasion and lysis of HeLa cell monolayers by Salmonella typhi the role of lipopolysaccharide. Microb Pathog 6:143–152

    Article  PubMed  CAS  Google Scholar 

  • Pace J, Hayman MJ, Galán JE (1993) Signal transduction and invasion of epithelial cells by Salmonella typhimurium. Cell 72:505–514

    Article  PubMed  CAS  Google Scholar 

  • Powell DW, Plotkin GR, Maenza RM, Solberg LI, Catlin DH, Formal SB (1971) Experimental diarrhoea I. Intestinal water and electrolyte transport in rat Salmonella enterocolitis. Gastroenterology 60:1053–1063

    CAS  Google Scholar 

  • Pruss GJ, Drlica K (1989) DNA supercoiling and prokaryotic transcription. Cell 56:521–523

    Article  PubMed  CAS  Google Scholar 

  • Rahn K, De Grandis S, Clark RC, McEwen SA, Galán JE, Ginocchio C, Curtiss III R, Gyles CL (1992) Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 6:271–279

    Article  PubMed  CAS  Google Scholar 

  • Reed WM, Olander HJ, Thacker HL (1985) Studies on the pathogenesis of Salmonella heidelberg infection in weanling pigs. Am J Vet Res 46:2300–2310

    PubMed  CAS  Google Scholar 

  • Reed WM, Olander HJ, Thacker HL (1986) Studies on the pathogenesis of Salmonella typhimurium and Salmonella choleraesuis var kunzendorf infection in weanling pigs. Am J Vet Res 47:75–83

    PubMed  CAS  Google Scholar 

  • Riley M, Sanderson KE (1990) Comparative genetics of Escherichia coli and Salmonella typhimurium. In: Drlica K, Riley M (eds) The bacterial chromosome. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Rosenshine I, Ruschkowski S, Foubister V, Finlay BB (1994) Salmonella typhimurium invasion of epithelial cells:role of the induced host cell tyrosine protein phosphorylation. Infect Immun 62:4969–4974

    PubMed  CAS  Google Scholar 

  • Rubino S, Leori G, Rizzu P, Erre G, Colombo MM, Uzzau S, Masala G, Cappuccinelli P (1993) TnphoA Salmonella abortusovis mutants unable to adhere to epithelial cells and with reduced virulence in mice. Infect Immun 61:1786–1792

    PubMed  CAS  Google Scholar 

  • Ruschkowski S, Rosenshine I, Finlay BB (1992) Salmonella typhimurium induces an inositol phosphate flux in infected epithelial cells. FEMS Lett 74:121–126

    Article  CAS  Google Scholar 

  • Sakai T, Sasakawa C, Yoshikawa M (1988) Expression of four virulence antigens of Shigella flexneri is positively regulated at the transcriptional level by the 30 kilodalton virF protein. Mol Microbiol 2:589–597

    Article  PubMed  CAS  Google Scholar 

  • Salmond GPC, Reeves PJ (1993) Membrane traffic wardens and protein secretion in gram-negative bacteria. Trends Biochem Sc 18:7–12

    Article  CAS  Google Scholar 

  • Sansonetti PJ (1992) Molecular and cellular biology of Shigella flexneri invasiveness:from cell assay systems to shigellosis. CurrTop Microbiol Immunol 180:1–19

    CAS  Google Scholar 

  • Sansonetti PJ, Ryter A, Clerc P, Maurelli AT, Mounier J (1986) Multiplication of Shigella flexneri within HeLa cells:lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect Immun 51:461–469

    PubMed  CAS  Google Scholar 

  • Schiemann DA, Shope SR (1991) Anaerobic growth of Salmonella typhimurium results in increased uptake by Henle 407 epithelial and mouse peritoneal cells in vitro and repression of a major outer membrane protein. Infect Immun 59:437–440

    PubMed  CAS  Google Scholar 

  • Stone BJ, Garcia CM, Badger JL, Hassett T, Smith RIF, Miller V (1992) Identification of novel loci affecting entry of Salmonella enteritidis into eukaryotic cells. J Bacteriol 174:3945–3952

    PubMed  CAS  Google Scholar 

  • Straley SC, Skrzypek E, Piano GV, Bliska JB (1993) Yops of Yersinia spp. pathogenic for humans. Infect Immun 61:3105–3110

    CAS  Google Scholar 

  • Takeuchi A (1967) Electron microscopic studies of experimental Salmonella infection. 1. Penetration into the intestinal epithelium by Salmonella typhimurium. Am J Pathol 50:109–136

    CAS  Google Scholar 

  • Takeuchi A, Sprinz H (1967) Electron-microscope studies of experimental Salmonella infection in the preconditioned guinea pig. II. Response of the intestinal mucosa to the invasion by Salmonella typhimurium. Am J Pathol. 51:137–161

    CAS  Google Scholar 

  • Tartera C, Metcalf ES (1993) Osmolarity and growth phase overlap in regulation of Salmonella typhi adherence to and invasion of human intestinal cells. Infect Immun 61:3084–3089

    PubMed  CAS  Google Scholar 

  • Trier JS, Madara JL (1988) Morphology of the mucosa of the small intestine. In: Johnson LR (ed) Physiology of the gastrointestinal tract, vol 2. Raven, New York

    Google Scholar 

  • Tsai MH, Yu CL, Stacey DW (1990) A cytoplasmic protein inhibits the GTPase activity of H-Ras in a phospholipid-dependent manner. Science 250:962–965

    Article  Google Scholar 

  • Van Gijsegem F, Genin S, Boucher C (1993) Conservation of secretion pathways for pathogenicity determinants of plant and animal bacteria. Trends Microbiol 1:175–180

    Article  PubMed  Google Scholar 

  • Verjan GMM, Ringrose JH, van Alphen L, Feltkamp TEW, Kusters JG (1994) Entrance and survival of Salmonella typhimurium and Yersinia enterocolitica within human B-and T-cell lines. Infect Immun 62:2229–2235

    Google Scholar 

  • Wattiau P, Bemier B, Deslée P, Michiels T, Comelis GR (1994) Individual chaperones required for Yop secretion by Yersinia. Proc Natl Acad Sci USA 91:10493–10497

    Article  PubMed  CAS  Google Scholar 

  • Wattiau P, Comelis GR (1993) SycE, a chaperone-like protein of Yersinia enterocolitica involved in the secretion of YopE. Mol Microbiol 8:123–131

    Article  PubMed  CAS  Google Scholar 

  • Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85–88

    Article  PubMed  CAS  Google Scholar 

  • Zierler M, Galán JE (1995) Contact with cultured epithelial cells induces the secretion of the Salmonella typhimurium invasion protein. Inv J Infect Immun (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Galán, J.E. (1996). Molecular and Cellular Bases of Salmonella Entry into Host Cells. In: Miller, V.L. (eds) Bacterial Invasiveness. Current Topics in Microbiology and Immunology, vol 209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85216-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85216-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85218-3

  • Online ISBN: 978-3-642-85216-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics