The Influence of Cytokines on the Central Nervous System of Transgenic Mice

  • K. Geiger
  • N. Sarvetnick
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 206)

Abstract

Cytokines are peptide regulatory factors which have been known for more than 40 years. In the past, extensive studies have contributed to a large body of data concerning their structure and their activities. The study of their function included the addition of cytokines to selected cell lines in vitro and the use of inhibitory antibodies and recombinant molecules in vivo. Recently, the production of mice transgenic for cytokine genes, or of mice whose genes encode either cytokines or their receptors, inactivated by homologous recombination (knockout mice), allowed new insight into the function of cytokines in vivo and revealed a whole network of related biological interactions. In contrast to the normal situation, in which the production of cytokines is mostly localized and transient, in the transgenic animals the presence of a transgene, or the complete absence of a targeted gene product, throughout the life of an animal often has consequences different from those that follow the repeated injection of cytokines, which have a short half-life in vivo, or the administration of antibodies, which may not reach every site of cytokine production.

Keywords

Leukemia Cadmium Neuropathy Sarcoma Interferon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams CWM (1977) Pathology of multiple sclerosis, Br. Med J 33: 15–20Google Scholar
  2. Adkins B, Ghanei A, Hamilton K (1993) Developmental regulation of IL-4, IL-2 and IFN-gamma production by murine peripheral T lymphocytes. J Immunol 151(12): 6617–6626PubMedGoogle Scholar
  3. Anderson DH, Williams DS, Neitz J, Fariss RN, Fliesler SJ (1988) Tunicamycin-induced degeneration in cone photoreceptors. Vis Neurosci 1: 153–158PubMedCrossRefGoogle Scholar
  4. Anderson JR, Field HJ (1984) An animal model of ocular herpes, keratitis, retinitis and cataract in the mouse. Br J Exp Pathol 65: 283–297PubMedGoogle Scholar
  5. Arai K, Lee F, Miyajima A, Miyatake S, Arai N (1990) Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem 59: 783–836PubMedCrossRefGoogle Scholar
  6. Arocker-Mettinger E, Steurer-Georgiew L, Steurer M, Huber-Spitzy V, Hoelzl E, Grabner G, Kuchar A (1992) Circulating ICAM-1 levels in serum of uveitis patients. Curr Eye Res 11 Suppl: 161–166PubMedCrossRefGoogle Scholar
  7. Atherton SS, Streilein JW (1987) Virus-specific DTH prevents contralateral retinitis following intra-cameral inoculation of HSV-2. Curr Eye Res 6: 133–139PubMedCrossRefGoogle Scholar
  8. Ayehunie S, Sonnerborg A, Yemane-Berhan T, Zewdie DW, Britton S, Strannegard O (1993) Raised levels of tumor necrosis factor-alpha and neopterin, but not interferon-alpha, in serum of HIV-1-infected from Ethiopia. Clin Exp Immunol 91: 37–42PubMedCrossRefGoogle Scholar
  9. Azumi A, Atherton SS (1994) Sparing of the ipsilateral retina after anterior chamber inoculation of HSV-1: Requirement for either CD4+ or CD8+ T cells. Invest Ophthalmol Vis Sci 35: 3251–3259PubMedGoogle Scholar
  10. Batra SK, Brown SM (1990) Herpes simplex virus genes controlling reactivation from latency in rabbit eye model. Indian J Med Res 1991: 252–257Google Scholar
  11. Benacerraf B (1981) Role of MHC gene products in immune regulation. Science 212: 1229–1238PubMedCrossRefGoogle Scholar
  12. Benveniste EN (1992) Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am J Physiol 263: C1–C16PubMedGoogle Scholar
  13. Bernton EW, Bryant HU, Decoster MA, Orenstein JM, Ribas JL, Meltzer MS (1992) No direct neurotoxicity by HIV-1 virions or culture fluids from HIV-infected T cells or monocytes. AIDS Res Hum Retrovir 8: 495–503PubMedCrossRefGoogle Scholar
  14. Bignami A, Dahl D (1979) The radial glia of Muller in the rat retina and their response to injury. An immunofluorescence study with antibodies to the glial fibrillay acidic protein. Exp Eye Res 28: 63–69PubMedCrossRefGoogle Scholar
  15. Bignami A, Eng LF, Dahl D, Uyeda CT (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 43: 429–435PubMedCrossRefGoogle Scholar
  16. Birdsall HH (1991) Induction of ICAM-1 on human neural cells and mechanisms of neutrophil-mediated injury. Am J Pathol 139: 1341–1350PubMedGoogle Scholar
  17. Brady ST (1993) Motor neurons and neurofilaments in sickness and in health. Cell 73: 1–3PubMedCrossRefGoogle Scholar
  18. Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MBA, Mucke L (1993) Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin-6. Proc Natl Acad Sci USA 90: 10061–10065PubMedCrossRefGoogle Scholar
  19. Campbell IL, Hobbs MV, Kemper P, Oldstone MBA (1994) Cerebral expression of multiple cytokine genes in mice with lymphocytic choriomeningitis. J Immunol 152: 716–723PubMedGoogle Scholar
  20. Capecchi MR (1989) Altering the genome by homologous recombination. Science 244: 1288–1292PubMedCrossRefGoogle Scholar
  21. Chiang CS, Masliah E, Stalder A, Samimi A, Campbell IL (1994) Gliosis and neurodegeneration as a consequence of the cerebral expression of IL-3 in transgenic mice. Soc Neurosci Abstr 20: 176.14Google Scholar
  22. Côté F, Collard JF, Julien JP (1993) Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 73: 35–46PubMedCrossRefGoogle Scholar
  23. Croen KD (1993) Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J Clin Invest 91(6): 2446–2452PubMedCrossRefGoogle Scholar
  24. Cuthbertson RA, Lang RA, Coghlan JP (1990) Macrophage products IL-1 α, TNF-α and bFGF may mediate multiple cytopathic effects in the developing eyes of GM-CSF transgenic mice. Exp Eye Res 51: 335–344PubMedCrossRefGoogle Scholar
  25. Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Steward TA (1993) Multiple defects of immune cell function in mice with disrupted interferon-y genes. Science 259: 1739–1742PubMedCrossRefGoogle Scholar
  26. Dayton ET, Matsumoto-Kobayashi M, Perussia P, Trinchieri G (1985) Role of immune interferon in the monocytic differentiation of human promyelocytic cell lines by leukocyte conditioned medium. Blood 66(3): 583–594PubMedGoogle Scholar
  27. Dix RW, Streilein JW, Cousins S, Atherton SS (1987) Histopathologic characteristics of two forms of experimental herpes simplex virus retinitis. Curr Eye Res 6: 47–52PubMedCrossRefGoogle Scholar
  28. Egwuagu CE, Sztein J, Chan CC, Reid W, Mahdi R, Nussenblatt RB, Chepelinsky AB (1994) Ectopic expression of gamma interferon in the eyes of transgenic mice induces ocular pathology and MHC class II gene expression. Invest Ophthalmol Vis Sci 35(2): 332–341PubMedGoogle Scholar
  29. Einer SG, Einer VM, Pavilack MA, Todd RF, Mayo-Bond L, Franklin WA, Strieter RM, Kunkel SL, Huber AR (1992) Modulation and function of intercellular adhesion molecule-1 (CD54) on human retinal pigment epithelial cells. Lab Invest 66(2): 200–211Google Scholar
  30. Geiger K, Sarvetnick N (1994a) Local production of IFN-γ abrogates the intraocular immune privilege in transgenic mice and prevents the induction of ACAID. J Immunol 153: 5239–5246PubMedGoogle Scholar
  31. Geiger K, Sarvetnick N (1994b) MHC class I expression contributes to the development of cataract in transgenic mice with ectopic expression of IFN-y. In: Nussenblatt RB, Whitcup SM, Caspi RR, Gery I (eds) Advances in ocular immunology. Elsevier, Amsterdam, pp 135-138Google Scholar
  32. Geiger K, Howes E, Gallina M, Huang XJ, Travis GH, Sarvetnick N (1994a) Transgenic mice expressing IFN-y in the retina develop inflammation and photoreceptor loss. Invest Ophthalmol Vis Sci 35(5): 2667–2681PubMedGoogle Scholar
  33. Geiger K, Howes EI, Sarvetnick N (1994b) Ectopic expression of IFN-y in the eye protects transgenic mice from intraocular HSV-1 infections. J Virol 69: 5556–5567Google Scholar
  34. Giulian G, Wendt E, Vaca K, Noonan CA (1993) The envelope glycoprotein of human immunodeficiency virus type 1 stimulated release of neurotoxins from monocytes. Proc Natl Acad Sci USA 90: 2769–2773PubMedCrossRefGoogle Scholar
  35. Gordon JW (1989) Transgenic animals. Int Rev Cytol 115: 171–227PubMedCrossRefGoogle Scholar
  36. Gordon YJ (1990) Pathogenesis and latency of herpes simplex virus type 1 (HSV-1): an ophthalmologist’s view of the eye as a model for the study of the virus-host relationship. Adv Exp Med Biol 278: 205–209PubMedGoogle Scholar
  37. Goureau O, Lepoivre M, Courtois Y (1992) Lipopolysaccharide and cytokines induce a macrophage-type of nitric oxide synthase in bovine retinal pigmented epithelial cells. Biochem Biophys Res Commun 186(2): 854–859PubMedCrossRefGoogle Scholar
  38. Guiloff RJ, Tan SV (1992) Central nervous system opportunisitic infections in HIV disease: clinical aspects. Baillieres Clin Neurol 1: 103–154PubMedGoogle Scholar
  39. Hamel CP, Detrick B, Hooks JJ (1990) Evaluation of la expression in rat ocular tissues following inoculation with interferon-gamma. Exp Eye Res 50(2): 173–182PubMedCrossRefGoogle Scholar
  40. Hamzaoui K, Slim AA, Hamza M, Touraine J (1990) Natural killer cell activity, interferon-gamma and antibodies to herpes viruses in patients with Behcet’s disease. Clin Exp Immunol 79: 28–34PubMedCrossRefGoogle Scholar
  41. Hiscott PS, Grierson I, Trombetta CJ, Rahi AHS, Marshall J, McLeod D (1984) Retinal and epiretinal glia. An immunohistochemical study. Br J Ophthalmol 68: 698–707PubMedCrossRefGoogle Scholar
  42. Hogan RN, Baringer JR, Prusiner SB (1987) Scrapie infection diminishes spines and increases varicosities of dendrites in hamsters: a quantitative Golgi analysis. J Neuropathol Exp Neurol 46: 461–473PubMedCrossRefGoogle Scholar
  43. Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H, Kamijo R, Vilcek J, Zinkemagel RM, Aguet M (1993) Immune response in mice that lack the interferon-y receptor. Science 259: 1742–1745PubMedCrossRefGoogle Scholar
  44. Hughes CC, Male DK, Lantos PL (1988) Adhesion of lymphocytes to cerebral microvascular cells: effects of interferon-gamma, tumor necrosis factor and interleukin-1. Immunology 64: 677–681PubMedGoogle Scholar
  45. Ishida Y, Nishi M, Taguchi O, Inaba K, Hattori M, Minato N, Kawaichi M, Honjo T (1989) Expansion of natural killer cells but not T cells in human interleukin-2/interleukin-2 receptor (Tac) trangenic mice. J Exp Med 170: 1103–1115PubMedCrossRefGoogle Scholar
  46. Iwakura Y, Asano M, Nishimune Y, Kawade Y (1988) Male sterility of transgenic mice carrying exogenous mouse interferon-beta gene under the control of the metallothionein enhancer-promoter. EMBO J 7: 3757–3762PubMedGoogle Scholar
  47. Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325: 253–257PubMedCrossRefGoogle Scholar
  48. John LD, Babcock G, Green D, Freedman M, Sriram S, Ransohoff RM (1992) Transforming growth factor-beta 1 differentially regulates proliferation and MHC class-ll antigen expression in forebrain and brainstem astrocyte primary culture. Brain Res 585(1-2): 229–236CrossRefGoogle Scholar
  49. Johnston PV, Roots BI (1976) Neuron-glial relationships. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology. North-Holland, Amsterdam, pp 401–421Google Scholar
  50. Klimpel GR, Asuncion M, Fons M, Norton JD, Albrecht T, Klimpel KD, Stein MD (1989) Interleukin 2 induced non MHC-restricted killing of herpes simplex type-1 (HSV-1) infected allogeneic and autologous lymphoblasts. J Clin Lab Immunol 29: 1–7PubMedGoogle Scholar
  51. Klotzbücher A, Mittnacht S, Kirchner H, Jacobsen H (1990) Different effects of IFNy and IFN α/β on “immediate early” gene expression of HSV-1. Virology 179: 487–491PubMedCrossRefGoogle Scholar
  52. Kroemer G, De Cid R, De Alboran IM, Gonzalo J-A, Iglesias A, Martinez AC, Gutiérrez-Ramos JC (1991) Immunological self-tolerance: an analysis employing cytokines or cytokine receptors encoded by transgenes or a recombinant vaccinia virus. Immunol Rev 122: 173–204PubMedCrossRefGoogle Scholar
  53. Lang RA, Metcalf D, Cuthbertson RA, Lyons I, Stanley E, Kelso A, Kannourakis G, Williamson DJ, Klintworth GK, Gonda TJ, Dunn AR (1987) Transgenic mice, expressing a hematopoetic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell 51: 675–687PubMedCrossRefGoogle Scholar
  54. Lem J, Applebury ML, Falk JD, Flannery JG, Simon MI (1991) Tissue-specific and developmental regulation of rod-opsin chimeric genes in transgenic mice. Neuron 6(2): 201–210PubMedCrossRefGoogle Scholar
  55. Liversidge J, Forrester JV (1992) Antigen processing and presentation in the eye: a review. Curr Eye Res 11 Suppl: 49–58PubMedCrossRefGoogle Scholar
  56. Lousch RN, Staats H, Oakes JE, Cohen GH, Eisenberg RJ (1991) Prevention of herpes keratitis by monoclonal antibodies specific for discontinuous and continuous epitopes on glycoprotein D. Invest Ophthalmol Vis Sci 32: 2735–2740PubMedGoogle Scholar
  57. Lucchiari MA, Pereira CA (1990) A major role of macrophage activation by interferon-gamma during mouse hepatitis virus type 3 infection. II. Age-dependent resistance. Immunobiology 181(1): 31–39PubMedCrossRefGoogle Scholar
  58. MacMillan V, Judge D, Wiseman A, Settles D, Swain J, Davis J (1993) Mice expressing a bovince basic fibroblast growth factor transgene in the brain show increased resistance to hypoxemic-ischemic cerebral damage. Stroke 24: 1735–1739PubMedCrossRefGoogle Scholar
  59. Marcinkiewicz J (1990) Cell-mediated immunity: roll of IL-3 and IL-6 in the regulation of contact sensitivity reaction. Folia Histochem Cytobiol 28: 107–119PubMedGoogle Scholar
  60. Martz E, Gamble SR (1992) How do CTL control virus infections? Evidence for prelytic halt of herpes simplex Viral Immunol 5(1): 81–91CrossRefGoogle Scholar
  61. Massa PT, Hirschfeld S, Levi B-Z, Quigley LA, Ozato K, McFarlin DE (1992) Expression of major histocompatibility complex (MHC) class I genes in astrocytes correlates with the presence of nuclear factors that bind to constitutive and inducible enhancers. J Neuroimmunol 41: 35–42PubMedCrossRefGoogle Scholar
  62. Matthieses MA, Pesson A, Sundquist VA, Wahren B (1988) Neutralization capacity and antibody dependent cell mediated cytotoxicity of separated IgG subclasses 1, 3 and 4 against herpes simplex. J Immunol 72: 211–215Google Scholar
  63. McKendall RR, Woo W (1987) Possible neural basis for age-dependent resistance to neurologic disease from herpes simplex virus. J Neurol Sci 81: 227–237PubMedCrossRefGoogle Scholar
  64. Meignier B, Norrild B, Roizman B (1983) Colonization of murine ganglia by a superinfecting strain of herpes simplex virus. Infect Immun 41(2): 702–708PubMedGoogle Scholar
  65. Merril JE (1992) Tumor necrosis factor alpha, interleukin 1 and related cytokines in brain development: normal and pathological. Dev Neurosci 14: 1–10CrossRefGoogle Scholar
  66. Mitchell WJ, Gressens P, Martin JR, DeSanto R (1994) Herpes simplex virus type 1 DNA persistence, progressive disease and transgenic immediate early gene promoter activity in chronic corneal infections in mice. J Gen Virol 75: 1201–1210PubMedCrossRefGoogle Scholar
  67. Morell P, Norton WT (1980) Myelin. Sci Am 242: 88–118PubMedCrossRefGoogle Scholar
  68. Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7: 145–173PubMedCrossRefGoogle Scholar
  69. Mountz JD, Zhou TJL (1990) Production of transgenic mice and application to immunology and autoimmunity. Am J Med Sci 300: 322–329PubMedCrossRefGoogle Scholar
  70. Neeley SP, Cross AJ, Crow TJ, Johnson JA, Taylor GR (1985) Herpes simplex virus encephalitis. Neuroanatomical and neurochemical selectivity. J Neurol Sci 71: 325–337PubMedCrossRefGoogle Scholar
  71. Nesburn AB, Dickinson R, Radnoti M, Green MJ (1976) Experimental reactivation of ocular herpes simplex in rabbits. Surv Ophthalmol 21(2): 185–190PubMedCrossRefGoogle Scholar
  72. Oldstone MBA, Southern PJ (1993) Trafficking of activated cytotoxic T lymphocytes into the central nervous system: use of a transgenic model. J Neuroimmunol 46: 25–32PubMedCrossRefGoogle Scholar
  73. Pepose JS, Holland GN, Nestor MS, Cochran AJ, Foos RY (1985) Acquired immune deficiency syndrome: Pathogenic mechanisms of ocular disease. Ophthalmology 92(1): 472–484PubMedGoogle Scholar
  74. Perry VH, Gordon S (1988) Macrophages and microglia in the nervous system. Trends Neurosci 11: 273–277PubMedCrossRefGoogle Scholar
  75. Perry VH, Hume DA, Gordon S (1985) Immunohistochemical localization of macrophages and microglia in adult and developing mouse brain. Neuroscience 15: 313–326PubMedCrossRefGoogle Scholar
  76. Price RW, Brew B, Sidtis J, Rosenblum M, Scheck AC (1988) The brain in AIDS: central nervous system HIV-1 infection and AIDS dementia complex. Science 239(4840): 586–592PubMedCrossRefGoogle Scholar
  77. Price RW, Brew BJ, Rosenblum M (1990) The AIDS dementia complex and HIV-1 brain infection: a pathogenetic model of virus-immune interaction. Res Publ Assoc Res Nerv Ment Dis 68: 269–290PubMedGoogle Scholar
  78. Provinciali M, Muxxioli M, Fabris N (1989) Timing of appearance and disappearance of IFN and IL-2 induced natural immunity during ontogenetic development and aging. Exp Gerontol 24(3): 227–236PubMedCrossRefGoogle Scholar
  79. Raff MC, Mirsky R, Fields KL, Lisak RP, Dorfman SH, Silberberg DH, Gregson NA, Leibowitz S, Xennedy M (1978) Galactocerebroside is a specific cell surface antigenic marker for oligo-dendrocytes in culture. Nature 274: 813–815PubMedGoogle Scholar
  80. Rail GF, Mucke L, Nerenberg M, Oldstone MBA (1994) A transgenic mouse model to assess the interaction of cytotoxic T lymphocytes with virally infected, class I MHC-expressing astrocytes. J Neuroimmunol 52: 61–68CrossRefGoogle Scholar
  81. Ramshaw IA, Ruby J, Ramsay A (1992) Cytokine expression by recombinant viruses-a new vaccine strategy. Tibtech 10: 424–426Google Scholar
  82. Ranscht B, Clapshaw PA, Pride J, Noble M, Seifert W (1982) Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside. Proc Natl Acad Sci USA 79: 2709–2713PubMedCrossRefGoogle Scholar
  83. Rock DL, Fräser NW (1983) Detection of the HSV-1 genome in central nervous system of latently infected mice. Nature 302: 523–525PubMedCrossRefGoogle Scholar
  84. Rossol-Voth R, Rossol S, Schutt KH, Corridori S, de Cian W, Falke D (1991) In vitro protective effect of tumor necrosis factor alpha against experimental infection with herpes simplex type 1. J Gen Virol 72: 143–147PubMedCrossRefGoogle Scholar
  85. Satoh T, Nakamura S, Taga T, Matsuda T, Hirano T, Kishimoto T, Kaziro Y (1988) Induction of neuronal differentiation in PC12 cells by B cell-stimulatory factor 2/interleukin-6. Mol Cell Biol 8: 3546–3549PubMedGoogle Scholar
  86. Schlote W (1991) HIV-encephalopathy. Verh Dtsch Ges Pathol 17: 51–60Google Scholar
  87. Schneider-Schaulies J, Kirchhoff F, Archelos J, Schachner M (1991) Down-regulation of myelin-asociated glycoprotein on Schwann cells by interferon-gamma and tumor necrosis factor-alpha affects neurite outgrowth. Neuron 7: 995–1005PubMedCrossRefGoogle Scholar
  88. Shankar V, Kao M, Hamir AN, Sheng H, Koprowski H, Dietzschold B (1992) Kinetics of virus level and changes in levels of several cytokine mRNAs in the brain after intranasal infection of rats with Borna disease virus. J Virol 66(2): 992–998PubMedGoogle Scholar
  89. Sharer LR (1992) Pathology of HIV-1 infection of the central nervous system: a review. J Neuropathol Exp Neurol 51: 3–11PubMedCrossRefGoogle Scholar
  90. Sligh JE, Ballantyne CM, Rich SS, Hawkins HK, Smith CW, Bradley A, Beaudet AL (1993) Inflammatory and immune responses are impaired in mice deficient in intercellular adhesion molecule 1. Proc Natl Acad Sci USA 90: 8529–8533PubMedCrossRefGoogle Scholar
  91. Smith KA (1992) lnterleukin-2. Curr Opin Immunol 4: 271–276PubMedCrossRefGoogle Scholar
  92. Spiezia KV, Dille BJ, Mushahwar IK, Kifle L, Okasinski GF (1990) Prevalence of specific antibodies to herpes simplex virus type 2 as revealed by an enzyme-linked immunoassay and Western blot analysis. Adv Exp Med Biol 278: 231–242PubMedGoogle Scholar
  93. Streilein JW (1993) Immune privilege as the result of local tissue barriers immunosuppressive microenvironments. Curr Opin Immunol 5: 428–432PubMedCrossRefGoogle Scholar
  94. Suzumura A, Silberberg DH, Lisak RP (1986) The expression of MHC antigens on oligodendrocytes: induction of polymorphic H-2 expression by lymphokines. J Neuroimmunol 71: 179–190CrossRefGoogle Scholar
  95. Taverne J (1993) Transgenic mice in the study of cytokine function. Int J Exp Pathol 74: 525–546PubMedGoogle Scholar
  96. Trousdale MD, Steiner I, Spivack JG, Deshmane SL, Brown SM, McLean A, Subak-Sharpe JH, Fraser NW (1991) In vivo and in vitro reactivation impairment of a herpes simplex virus type 1 latency-associated transcript variant in a rabbit eye model. J Virol 65(12): 6989–6993PubMedGoogle Scholar
  97. Van Snick JV (1990) lnterleukin-6: an overview. Annu Rev Immunol 8: 253–278PubMedCrossRefGoogle Scholar
  98. Vann VR, Atherton SS (1991) Neural spread of herpes simplex virus after anterior chamber inoculation. Invest Ophthalmol Vis Sci 32: 2462–2472PubMedGoogle Scholar
  99. Vazeux R (1990) AIDS encephalopathy and tropism of HIV for brain monocytes/macrophages and microglial cells. Pathobiology 59: 214–218CrossRefGoogle Scholar
  100. Vitkovic L, Da Cunha A, Tyor WR (1993) Cytokine expression and pathogenesis in AIDS brain. In: Price PW, Perry SW (eds) HIV, AIDS, and the brain. Raven, New YorkGoogle Scholar
  101. Wawrousek EF, Lai JC, Gery I, Chan CC (1994) Progressive inflammatory disease and neova-scularization in the eyes of interleukin-1β transgenic mice. In: Nussenblatt RB, Whitcup SM, Caspi RR, Gery I (eds) Advances in ocular immunology. Elsevier, Amsterdam, pp 143–146Google Scholar
  102. Weinstein DL, Walker DG, Akiyama H, McGeer PL (1990) Herpes simplex virus type I infection of the CNS, induces major histocompatibility complex antigen expression on rat microglia. J Neurosci Res 26: 55–65PubMedCrossRefGoogle Scholar
  103. Whittum-Hudson JA, Pepose JS (1988) Herpes simplex virus type 1 induces anterior chamber-associated immune deviation (ACAID) in mouse strains resistant to intraocular infection. Curr Eye Res 7(2): 125–130PubMedCrossRefGoogle Scholar
  104. Wong GHW, Bartlett PF, Clark-Lewis I, Battye F, Schrader JW (1984) Inducible expression of H-2 and la antigens on brain cells. Nature 310: 688–691PubMedCrossRefGoogle Scholar
  105. Zack DJ, Bennett J, Wang Y, Davenport C, Klaunberg B, Gaerhart J, Nathans J (1991) Unusual topography of bovine rhodopsin promoter-LacZ fusion gene expression in transgenic mouse retinas. Neuron 6(2): 187–199PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • K. Geiger
    • 1
  • N. Sarvetnick
    • 1
  1. 1.Department of NeuropharmacologyThe Scripps Research InstituteLa JollaUSA

Personalised recommendations