Skip to main content

The Contribution of Insulitis to Diabetes Development in Tumor Necrosis Factor Transgenic Mice

  • Chapter
Transgenic Models of Human Viral and Immunological Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 206))

Abstract

The hallmark of insulin-dependent diabetes mellitus (IDDM) is infiltration in (insulitis) and around (peri-insulitis) the islets of Langerhans, the site of synthesis of insulin (EISENBARTH 1986; GEPTS 1965). Destruction of these islets occurs and, as a consequence, the ability of the patient to produce insulin is eliminated, resulting in frank diabetes. Evidence accumulated over a number of years has shown that IDDM is determined by both genetic and environmental factors. A breakthrough in the genetics was made by the observation of a strong association between IDDM and HLA-DQβ, and later DQα alleles (Todd 1990). These early studies, however, showed clearly that this disease is polygenic in nature, since possession of these HLA susceptibility alleles only predisposed one to, but did not confer a high probability of, IDDM occurrence. In addition, multiple families, including some with identical twins, carrying susceptibility to IDDM have been studied. Strikingly, the results showed that, even when one twin develops IDDM, the probability of the second twin developing disease is only 20%–30%. This has led to the conclusion that environmental effects also play a key role in the development of diabetes (Eisenbarth 1986; Todd 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison J, Malcolm L, Chosich N, Miller JFAP (1992) Inflammation but not autoimmunity occurs in transgenic mice expressing constitutive levels of interleukin-2 in islet β cells. Eur J Immunol 22: 1115–1121

    Article  PubMed  CAS  Google Scholar 

  • Androlewicz MJ, Browning JL, Ware CF (1992) Lymphotoxin is expressed as a heteromeric complex with a distinct 33-kDa glycoprotein on the surface of an activated human T cell hybridoma. J Biol Chem 267: 2542–2547

    PubMed  CAS  Google Scholar 

  • Aversa G, Punnonen J, deVries JE (1993) The 26-kD transmembrane form of tumor necrosis factor-α on activated CD4+ T cell clones provides a costimulatory signal for B cell activation. J Exp Med 177: 1575–1585

    Article  PubMed  CAS  Google Scholar 

  • Banner DW, D’Arcy A, Jaanes W, Gentz R, Schoenfeld H-J, Broger C, Loetscher H, Lesslauer W (1993) Crystal structure of the soluble human 55 kd TNF receptor-human TNF-β complex: implications for TNF receptor activation. Cell 73: 431–445

    Article  PubMed  CAS  Google Scholar 

  • Baron JL, Madri JA, Ruddle NH, Hashim G, Janeway CA (1993) Surface expression of α4 integrin by T cells is required for their entry into brain parenchyma. J Exp Med 177: 57–68

    Article  PubMed  CAS  Google Scholar 

  • Barten D, Ruddle NH (1994) Vascular cell adhesion molecule-1 modulation by TNF in experimental allergic encephalomyeleits. J Neuroimmunol 51: 123–133

    Article  PubMed  CAS  Google Scholar 

  • Bevilacqua MP, Stengelin S, Gimbrone MA, Seed B (1989) Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243: 1160–1165

    Article  PubMed  CAS  Google Scholar 

  • Browning JL, Ngam-ek A, Lawton P, DeMarinis J, Tizard R, Chow EP, Hesson C, O’Brine-greco B, Foley SF, Ware CF (1993) Lymphotoxin-β, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell 72: 847–856

    Article  PubMed  CAS  Google Scholar 

  • Charlton B, Bacelj A, Slattery RM, Mandel TE (1989) Cyclophosphamide-induced diabetes in NOD/ WEHI mice. Diabetes 38: 441–447

    Article  PubMed  CAS  Google Scholar 

  • Crowe PD, Van Arsdale TL, Walter BN, Ware CF, Hession C, Ehrenfels B, Browning JL, Din WS, Goodwin RG, Smith CA (1994) A lymphotoxin-β-specific receptor. Science 264: 707–710

    Article  PubMed  CAS  Google Scholar 

  • De Togni PD, Goellner J, Ruddle NH, Streeter PR, Fick A, Mariathasan S, Smith SC, Carlson R, Shornick LP, Strauss-Schoenberger J, Russell JH, Karr R, Chaplin DD (1994) Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264: 703–707

    Article  PubMed  Google Scholar 

  • Eisenbarth GS (1986) Type I diabetic mellitus. A chronic autoimmune disease. Engl J Med 314: 1360–1368

    Article  CAS  Google Scholar 

  • Elliott EA, Flavell RA (1994) Transgenic mice expressing constitutive levels of IL2 in islet β cells develop diabetes. Int Immunol 6: 1629–1637

    Article  PubMed  CAS  Google Scholar 

  • Faveeuw C, Gagnerault M-C, Lepault F (1994) Expression of homing and adhesion molecules in infiltrated islets of Langerhans and salivary glands of nonobese diabetic mice. J Immunol 152: 5969–5978

    PubMed  CAS  Google Scholar 

  • Gepts W (1965) Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14: 619–633

    PubMed  CAS  Google Scholar 

  • Ghosh S, Palmer SM, Rodrigues NR, Cordell HJ, Hearne CM, Cornall RJ, Prins J-B, McShane P, Lathrop GM, Peterson LB, Wicker LS, Todd JA (1993) Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nature Genet 4: 404–409

    Article  PubMed  CAS  Google Scholar 

  • Granger GA, Williams TW (1968) Lymphocyte cytotoxicity in vitro: activation and release of a cytotoxic factor. Nature 218: 1253–1254

    Article  PubMed  CAS  Google Scholar 

  • Guerder S, Picarella D, Linsley PS, Flavell RA (1994) Costimulator B7-1 confers antigen-presenting cell function to parenchymal tissue and in conjunction with tumor necrosis factor a leads to autoimmunity in transgenic mice. Proc Natl Acad Sci USA 91: 5138–5142

    Article  PubMed  CAS  Google Scholar 

  • Hanninen A, Taylor C, Streeter PR, Stark LS, Sarte JM, Shizuru JA, Simell O, Michie SA (1993) Vascular addressins are induced on islet vessels during insulitis in nonobese diabetic mice and are involved in lymphoid cell binding to islet endothelium. J Clin Invest 92: 2509–2515

    Article  PubMed  CAS  Google Scholar 

  • Hattori M, Buse JB, Jackson RA, Glimcher L, Dorf ME, Minami M, Makino S, Moriwaki K, Kuzuya H, Imura H, Strauss WM, Seidman JG, Eisenbarth GS (1986) The NOD mouse: recessive diabetogenic gene in the major histocompatibility complex. Science 231: 733–735

    Article  PubMed  CAS  Google Scholar 

  • Heath WR, Allison J, Hoffmann MW, Schonrich G, Hammerling G, Arnold B, Miller JFAP (1992) Autoimmune diabetes as a consequence of locally produced interleukin-2. Nature 359: 547–549

    Article  PubMed  CAS  Google Scholar 

  • Held W, MacDonald HR, Weissman IL, Hess MW, Mueller C (1990) Genes encoding tumor necrosis factor a and granzyme A are expressed during development of autoimmune diabetes. Proc Natl Acad Sci USA 87: 2239–2243

    Article  PubMed  CAS  Google Scholar 

  • Higuchi Y, Herrera P, Muniesa P, Huarte J, Belin D, Ohashi P, Aichele P, Orci L, Vassalli J-D, Vassalli P (1992) Expression of a tumor necrosis factor a transgene in murine pancreatic β cells results in severe and permanent insulitis without evolution towards diabetes. J Exp Med 176: 1719–1731

    Article  PubMed  CAS  Google Scholar 

  • Hohmann H-P, Brockhaus M, Baeuerle PA, Remy R, Kolbeck R, Vanloon APGM (1991) Expression of the types A and B tumor necrosis factor (TNF) receptors is independently regulated, and both receptors mediate activation of the transcription factor, NF-KB. J Biol Chem 265: 22409–22417

    Google Scholar 

  • Jacob CO, Aiso S, Michi SA, McDevitt HO, Acha-Orbea H (1990) Prevention of diabetes in nonobese diabetic mice by tumor necrosis factor (TNF): similarities between TNF-oc and interleukin 1. Proc Natl Acad Sci 87: 968–972

    Article  PubMed  CAS  Google Scholar 

  • Jiang Z, Woda BA (1991) Cytokine gene expression in the islets of the diabetic biobreeding/Worcester rat. J Immunol 146: 2990–2994

    PubMed  CAS  Google Scholar 

  • Johnson DR, Pober JS (1990) Tumor necrosis factor and immune interferon synergistically increase transcription of HLA class I heavy-and light chain genes in vascular endothelium. Proc Natl Acad Sci USA 87: 5183–5187

    Article  PubMed  CAS  Google Scholar 

  • Kikutani H, Makino S (1992) The murine autoimmune diabetes model: NOD and related strains. Adv Immunol 51: 285–322

    Article  PubMed  CAS  Google Scholar 

  • Kratz A, Ruddle NH (1994) Lymphotoxin alone, in the absence of other lymphocyte derived cytokines, activates endothelial cells in vivo and interferes with normal islet development. Eur Cytokine Netw 5: 203

    Google Scholar 

  • Kriegler M, Perez C, DeFay K, Albert I, Lu SD (1988) A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 53: 45

    Article  PubMed  CAS  Google Scholar 

  • Lieberman AP, Pitha P, Shin HS, Shin ML (1989) Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. Proc Natl Acad Sci USA 86: 6348–6352

    Article  PubMed  CAS  Google Scholar 

  • Loetscher H, Brockhaus M, Dembic Z, Gallati H, Gentz R, Gubler U, Lahm H-W, Lustig A, Pan Y-CE, Schlaeger E-J, Tabuchi H, Zulauf M, Lesslauer W (1992) Two distinct human TNF receptors: purification, molecular cloning, and expression. In: Osawa T, Bonavida B (eds) Tumor necrosis factor: structure-function relationship and clinical application. Karger, Basel, pp 34–47

    Google Scholar 

  • Mackay F, Loetscher H, Stueber D, Gehr G, Lesslauer W (1993) Tumor necrosis factor-α (TNF-α) induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55. J Exp Med 177: 1277–1286

    Article  PubMed  CAS  Google Scholar 

  • Mandrup-Poulsen T, Bendtzen K, Dinarello CA, Nerup J (1987) Human tumor necrosis factor potentiates human interleukin 1-mediated rat pancreatic β-cell cytotoxicity. J Immuol 139: 4077–4082

    CAS  Google Scholar 

  • McGeehan GM, Becherer JD, Bast RC Jr, Boyer CM, Champion B, Connolly KM, Conway JG, Fordun PO, Karp S, Kidao S, McElroy AB, Nichols J, Pryzwansky K, Sonoenen F, Sekut L, Truesdale A, Verghese M, Warner J, Ways JP (1994) Regulation of tumour necrosis factor-a processing by a metalloproteinase inhibitor. Nature 370: 558–561

    Article  PubMed  CAS  Google Scholar 

  • Millet I, Ruddle NH (1994) Differential regulation of lymphotoxin (LT), lymphotoxin-β (LT-β), and TNF-α in murine T cell clones activated through the TCR. J Immunol 152: 4336–4346

    PubMed  CAS  Google Scholar 

  • Mohler KM, Sleath PR, Fitzner JN, Cerretti DP, Alderson M, Kerwar SS, Torrance DS, Otten-Evans C, Greenstreet T, Weerawama K, Kronheim SR, Petersen M, Gerhart M, Kozlosky CJ, Marck CJ, Black RA (1994) Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing. Nature 370: 218–220

    Article  PubMed  CAS  Google Scholar 

  • Müller U, Jongeneel V, Nedospasov SA, Lindahl KF, Steinmetz M (1987) Tumor necrosis factor and lymphotoxin genes map close to H-2D in the mouse major histocompatibility complex. Nature 325: 265–267

    Article  PubMed  Google Scholar 

  • Munro JM, Pober JS, Cotran RS (1989) Tumor necrosis factor and interferon-y induce distinct patterns of endothelial activation and associated leukocyte accumulation in skin of Papio anubis. Am J Pathol 135: 121–

    PubMed  CAS  Google Scholar 

  • Nedwin GE, Naylor SL, Sakaguchi AY, Smith D, Jarret NJ, Pennica D, Goeddel DV, Gray PW (1985) Human lymphotoxin and tumor necrosis factor genes: structure, homology and chromosomal localization. Nucleic Acids Res 13: 6361–6373

    Article  PubMed  CAS  Google Scholar 

  • Ohashi PL, Oehen S, Buerki K, Pircher H, Ohashi CT, Odermatt B, Malissen B, Zinkernagel RM, Hengartner H (1991) Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65: 305–317

    Article  PubMed  CAS  Google Scholar 

  • Ohashi PL, Oehen S, Aichele P, Pircher H, Odermatt B, Herrera P, Higuchi Y, Buerki K, Hengartner H, Zinkernagel RM (1993) Induction of diabetes is influenced by the infectious virus and local expression of Class I and TNF-alpha. J Immunol 11: 5185–5194

    Google Scholar 

  • Oppenheim JJ, Zachariae COC, Mukaida N, Matsushima K (1991) Properties of the novel pro-inflammatory supergene “intercrine” family. Annu Rev Immunol 9: 617–648

    Article  PubMed  CAS  Google Scholar 

  • Paul NL, Ruddle NH (1988) Lymphotoxin. Annu Rev Immunol 6: 407–438

    Article  PubMed  CAS  Google Scholar 

  • Picarella DE, Kratz A, Li C-B, Ruddle NH, Flavell RA (1992) Insulitis in transgenic mice expressing TNF-β (lymphotoxin) in the pancreas. Proc Natl Acad Sci USA 89: 10036–100

    Article  PubMed  CAS  Google Scholar 

  • Picarella DE, Kratz A, Li C-B, Ruddle NH, Flavell RA (1993) Transgenic TNF-a production in islets leads to insulitis, not diabetes: distinct patterns of inflammation in TNF-a and TNF-β transgenic mice. J Immunol 149: 4136–4150

    Google Scholar 

  • Pociot F, Molvig J, Wogensen L, Worsaae H, Dalboge H, Baek L, Nerup J (1991) A tumor necrosis factor beta gene polymorphism in relation to monokine secretion and insulin-dependent diabetes mellitus. Scand J Immunol 33: 37–49

    Article  PubMed  CAS  Google Scholar 

  • Prieto J, Kaaya EE, Juntti-Berggren L, Berggren P-O, Sandler S, Biberfeld P, Patarroyo M (1992) Induction of intercellular adhesion molecule-1 (CD54) on isolated mouse pancreatic β cells by inflammatory cytokines. Clin Immunol Imunopathol 65: 247–253

    Article  CAS  Google Scholar 

  • Pujol-Borrell R, Todd I, Doshi M, Bottazzo GF, Sutton R, Gray D, Adolf GR, Feldmann M (1987) HLA class II induction in human isleT cells by interferon-y plus tumour necrosis factor or lymphotoxin. Nature 326: 304–306

    Article  PubMed  CAS  Google Scholar 

  • Ruddle NH, Waksman BH (1967) Cytotoxic effect of lymphocyte-antigen interaction in delayed hypersensitivity. Science 157: 1060–1062

    Article  PubMed  CAS  Google Scholar 

  • Ruddle NH, Waksman BH (1968) Cytotoxicity mediated by soluble antigen and lymphocytes in delayed hypersensitivity. III. Analysis of mechanism. J Exp Med 128: 1267–1279

    Article  PubMed  CAS  Google Scholar 

  • Ruddle NH, Bergman C, McGrath KM, Lingenheld EG, Grunnet ML, Padula SJ, Clark RB (1990) An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J Exp Med 172: 1193–1200

    Article  PubMed  CAS  Google Scholar 

  • Sarvetnick N, Liggitt D, Pitts SL, Hansen SE, Stewart TA (1988) Insulin-dependent diabetes mellitus induced in transgenic mice by ectopic expression of class II MHC and interferon-gamma. Cell 52: 773–782

    Article  PubMed  CAS  Google Scholar 

  • Sarvetnick N, Shizuru J, Liggitt D, Martin L, Mclntyre B, Gregory A, Parslow T, Stewart T (1990) Loss of pancreatic islet tolerance induced by β-cell expression of interferon-y. Nature 346: 844–847

    Article  PubMed  CAS  Google Scholar 

  • Satoh J, Seino H, Abo T, Tanaka S-l, Shintani S, Ohta S, Tamura K, Sawai T, Nobunaga T, Oteki T, Kumagai K, Toyota T (1989) Recombinant human tumor necrosis factor a suppresses autoimmune diabetes in nonobese diabetic mice. J Clin Invest 84: 1345–1348

    Article  PubMed  CAS  Google Scholar 

  • Satoh J, Seino H, Shintani S, Tanaka S-l, Ohteki T, Masuda T, Nobunaga T, Toyota T (1990) Inhibition of type 1 diabetes in BB rats with recombinant human tumor necrosis factor-a. J Immunol 145: 1395–1399

    PubMed  CAS  Google Scholar 

  • Sawada M, Kondo N, Suzumura A, Marunouchi T (1989) Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res 491: 394–397

    Article  PubMed  CAS  Google Scholar 

  • Schmid DS, Tite JP, Ruddle NH (1986) DNA fragmentation: manifestation of targeT cell destruction mediated by cytotoxic T cell lines, lymphotoxin-secreting helper T cell clones and cell-free lympho-toxin-containing supernatant. Proc Natl Acad Sci USA 83: 1881–1886

    Article  PubMed  CAS  Google Scholar 

  • Schmid DS, Hornung R, McGrath KM, Ruddle NH (1987) TargeT cell DNA fragmentation is mediated by lymphotoxin and tumor necrosis factor. Lymphokine Res 61: 195–202

    Google Scholar 

  • Seino H, Takahashi K, Satoh J, Zhu XP, Sagara M, Masuida T, Nobunaga T, Funahashi I, Kajikawa T, Toyota T (1993) Prevention of autoimmune diabetes with lymphotoxin in NOD mice. Diabetes 42: 398–404

    Article  PubMed  CAS  Google Scholar 

  • Sheehan KCF, Ruddle NH, Schreiber RD (1989) Generation and characterization of hamster monoclonal antibodies that neutralize murine tumor necrosis factors. J Immunol 142: 3884–3893

    PubMed  CAS  Google Scholar 

  • Shinkai Y, Rathbun G, Lam K-P, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F, Stall AM, Alt FW (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68: 855–867

    Article  PubMed  CAS  Google Scholar 

  • Slowik MR, DeLuca LG, Flers W, Pober JS (1993) Tumor necrosis factor (TNF) activates human endothelial cells through the p55 TNF receptor but the p75 receptor contributes to activation at low TNF concentration. Am J Pathol 143: 1724–1730

    PubMed  CAS  Google Scholar 

  • Todd JA (1990) Genetic control of autoimmunity in type 1 diabetes. Immunol Today 11: 122–129

    Article  PubMed  CAS  Google Scholar 

  • Todd JA, Aitman TJ, Cornall RJ, Ghosh S, Hall JRS, Hearne CM, Knight AM, Love JM, McAleer Ma, Prins J-B, Rodrigues N, Lathrop M, Pressey A, DeLarato NH, Peterson LB, Wicker LS (1991) Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature 351: 542–547

    Article  PubMed  CAS  Google Scholar 

  • Ware CF, Crowe PD, Vanarsdale TL, Andrews JL, Grayson MH, Jerzy R, Smith CA, Goodwin RG (1991) Tumor necrosis factor (TNF) receptor expression in T lymphocytes: differential regulation of the type 1 TNF recepto during activation of resting and effector cells. J Immunol 147: 4229–4238

    PubMed  CAS  Google Scholar 

  • Ware CF, Crowe PD, Grayson MH, Androlewicz MJ, Browning JL (1992) Expression of surface lymphotoxin and tumor necrosis factor on activated T, B, and natural killer cells. J Immunol 149: 3881–3888

    PubMed  CAS  Google Scholar 

  • Wicker LS, Miller BJ, Coker LZ, McNally SE, Scott S, Mullen Y, Appel MC (1987) Genetic control of diabetes and insulitis in the nonobese diabetic (NOD) mouse. J Exp Med 165: 1639–1655

    Article  PubMed  CAS  Google Scholar 

  • Wicker LS, Miller BJ, Fischer PA, Pressey A, Peterson LB (1989) Genetic control of diabetes and insulitis in the nonobese diabetic mouse: pedigree analysis of a diabetic H-2nod/b heterozygote. J Immunol 142: 781–784

    PubMed  CAS  Google Scholar 

  • Wogensen L, Huang X, Sarvetnick N (1993) Leukocyte extravasation into the pancreatic tissue in transgenic mice expressing interleukin-10 in the islets of Langerhans. J Exp Med 178: 175–185

    Article  PubMed  CAS  Google Scholar 

  • Yang X-D, Karin N, Tisch R, Steinman L, McDevitt HO (1993) Inhibition of insulitis and prevention of diabetes in nonobese diabetic mice by blocking L-selectin and very late antigen 4 adhesion receptors. Proc Natl Acad Sci USA 90: 10494–10498

    Article  PubMed  CAS  Google Scholar 

  • Yang X-D, Tisch R, Singer SM, Liblau L, Cao Z, Schreiber R, Nagata S, McDevitt H (1994) The role of TNF in lymphocyte development and in the immunopathogenesis of insulin-dependent diabetes. Eur Cytokine Netw 5: 184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flavell, R.A., Kratz, A., Ruddle, N.H. (1996). The Contribution of Insulitis to Diabetes Development in Tumor Necrosis Factor Transgenic Mice. In: Chisari, F.V., Oldstone, M.B.A. (eds) Transgenic Models of Human Viral and Immunological Disease. Current Topics in Microbiology and Immunology, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85208-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85208-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85210-7

  • Online ISBN: 978-3-642-85208-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics