Skip to main content

Part of the book series: Laser in Technik und Forschung ((LASER TECHNIK))

  • 143 Accesses

Zusammenfassung

Mit der Technologie der diodengepumpten Festkörperlaser ergeben sich gerade auch in Bezug auf monofrequente (“single-frequency”) Laser geringer Linienbreite und somit großer Kohärenzlänge sowie hoher Frequenzstabilität neue Perspektiven. So können mit relativ einfachen Mitteln aufgrund der guten Überlappung von Pumplicht- und Modenvolumen sowie durch die gute Anpassung der spektralen Pumplichtverteilung an die Absorption des Lasermaterials hohe Ausgangsleistungen monofrequenter Strahlung erzielt werden, wie es bisher mit lampengepumpten Lasern nicht oder nur unter erheblichem Aufwand möglich war. Die beim Diodenpumpen deutlich verringerten Leistungsschwankungen der Anregungsquelle sowie die geringere Wärmelast im Laserkristall führen bereits ohne zusätzliche Stabilisierungsmaßnahmen zu einer wesentlich erhöhten Frequenzstabilität, verglichen mit herkömmlichen, lampengepumpten Systemen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. B. Zhou, T.J. Kane, G.J. Dixon, R.L. Byer: Efficient, frequency-stable laserdiode pumped Nd:YAG laser; Opt. Lett. 10 (1985) 62

    Article  Google Scholar 

  2. A.E. Siegman: Lasers; Univ. Science Books, Mill Valley, Calif., USA, 1986, S. 484

    Google Scholar 

  3. H.G. Danielmeyer: Effects of drift and diffusion of excited states on spatial hole burning and laser oscillation; J. Appl. Phys. 25 (1971) 3125

    Article  Google Scholar 

  4. T.K. Kimura, K. Otsuka, M. Saruwatari: Spatial hole-burning effects in a Nd:YAG3+ laser; IEEE J. Quantum Electron. QE-7 (1971) 225

    Article  Google Scholar 

  5. P.J. Valle, F. Moreno: Theoretical study of birefringent filters as intracavity wavelength selectors; Appl. Opt. 31 (1992) 528

    Article  Google Scholar 

  6. A.L. Bloom: Modes of a laser resonator containing tilted birefringent plates; J. Opt. Soc. Am. 64 (1974) 447

    Article  Google Scholar 

  7. D.W. Anthon, T.J. Pier: Intracavity pumping of solid-state lasers with Nd:YAG; LEOS 91, Conf. Digest, Beitrag ELT3.3 (1991) 49

    Google Scholar 

  8. S.W. Henderson, C.P. Hale: Tunable single-longitudinal-mode diode laser pumped Tm:Ho:YAG laser; Appl. Opt. 29 (1990) 1716

    Article  Google Scholar 

  9. W. Koechner: Solid-State Laser Engineering; 3. Auflage, Springer-Verlag, Berlin, 1992

    Google Scholar 

  10. W. Culshaw, J. Kannelaud: Two-component-mode filters for optimum single-frequency operation of Nd:YAG lasers; IEEE J. Quantum Electron. QE-7 (1971) 381

    Article  Google Scholar 

  11. T. Chuang, H.J. Metcalf: Tunable diode-laser-pumped solid state LNA laser for helium spectroscopic experiments; Appl. Opt. 30 (1991) 2495

    Article  Google Scholar 

  12. P. Laporta, S. Longhi, S. Taccheo, O. Svelto: Single-mode cw erbium-ytterbium glass laser at 1.5 μm; Opt. Lett.18 (1993) 31

    Article  Google Scholar 

  13. L.S. Lingvay, G.J. Dixon, N. Djeu: Tunable single-frequency 1.3-μm Nd:YALO microlaser; OSA Conf. on Tunable Solid State Lasers (North Falmouth, 1989), Tech. Digest, Beitrag WB3 (1989) 115

    Google Scholar 

  14. P.W. Smith, M.V. Schneider, H.G. Danielmeyer: High-power single-frequency lasers using thin metal film mode-selection filters; Bell Syst. Tech. J. 48 (1969) 1405

    Google Scholar 

  15. Yu. V. Troitskii: Optical resonator with a thin absorbing film as a mode selector; Opt. Spectr. (USSR) 25 (1968) 309

    Google Scholar 

  16. P.W. Smith: Single-frequency lasers; in: Lasers, Hrsg.: A.K. Levine, A.J. DeMaria, Marcel Dekker Inc., NY, USA, 1976

    Google Scholar 

  17. Deutsches Patent DE 4242862

    Google Scholar 

  18. s. [8.2], S. 524

    Google Scholar 

  19. M.J. Adams, J. Buus: Two-segment cavity theory for mode selection in semiconductor lasers; IEEE J. Quantum Electron. 20 (1984) 99

    Article  Google Scholar 

  20. M.B. Spencer, W.E. Lamb: Theory of two coupled lasers; Phys. Rev. A 5 (1972) 893

    Article  Google Scholar 

  21. J.H. Osmundsen, N. Gade: Influence of optical feedback on laser frequency spectrum and threshold conditions; IEEE J. Quantum Electron. 19 (1983) 465

    Article  Google Scholar 

  22. H.K. Choi, K.-L. Chen, S. Wang: Analysis of two-section coupled-cavity semiconductor lasers; IEEE J. Quantum Electron. 20 (1984) 385

    Article  Google Scholar 

  23. R. Scheps, J. Myers: A single frequency Nd:YAG ring laser pumped by laser diodes; IEEE J. Quantum Electron. 26 (1990) 413

    Article  Google Scholar 

  24. T.J. Kane: Coherent laser radiation at 1.06 microns using solid-state lasers; Dissertation, Stanford, USA, August 1986

    Google Scholar 

  25. T.J. Kane, R.L. Byer: Monolithic, unidirectional single-mode Nd:YAG ring laser; Opt. Lett. 10 (1985) 65

    Article  Google Scholar 

  26. T.J. Kane, A.C. Nilsson, R.L. Byer: Frequency stability and offset locking of a laser-diode-pumped Nd:YAG monolithic nonplanar ring oscillator; Opt. Lett. 12 (1987) 175

    Article  Google Scholar 

  27. A.C. Nilsson, E.K. Gustafson, R.L. Byer: Eigenpolarization theory of monolithic nonplanar ring oscillators; IEEE J. Quantum Electron. 25 (1989) 767

    Article  Google Scholar 

  28. L.G. Kazovsky, D.A. Atlas: Miniature Nd:YAG lasers: noise and modulation characteristics; J. Lightwave Tech. 8 (1990) 294

    Article  Google Scholar 

  29. C.C. Chen, M.Z. Win: Frequency noise measurement of diode-pumped Nd:YAG ring lasers; IEEE Photon. Tech. Lett. 2 (1990) 772

    Article  Google Scholar 

  30. T.J. Kane: Intensity noise in diode-pumped single-frequency Nd:YAG lasers and its control by electronic feedback; IEEE Photon. Tech. Lett. 2 (1990) 244

    Article  Google Scholar 

  31. W.R. Trutna Jr., D.K. Donald, M. Nazarathy: Unidirectional diode-laser-pumped Nd:YAG ring laser with a small magnetic field; Opt. Lett. 12 (1987) 248

    Article  Google Scholar 

  32. H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazumura: Noise generation in laser diode-pumped solid-state lasers due to mode hopping of pumping diodes; CLEO 92, Tech Digest, Beitrag CWG32 (1992) 280

    Google Scholar 

  33. R. Wallenstein; private Mitteilung, Universität Kaiserslautern, 1994

    Google Scholar 

  34. D.G. Scerbak: Monolithic unidirectional planar ring oscillators; SPIE Bd. 1223, Solid State Lasers (1990) 196

    Article  Google Scholar 

  35. Fa. Lightwave Electronics Corp., 897–5A Independence Av., Mountain View, Calif, USA

    Google Scholar 

  36. E.A.P. Cheng, T.J. Kane: High-power single-mode diode-pumped Nd:YAG laser using a monolithic nonplanar ring resonator; Opt. Lett. 16 (1991) 478

    Article  Google Scholar 

  37. A.P. Cheng, T.A. Kane, R.W. Wallace: Injection chaining of diode-pumped single-frequency ring lasers for free-space communications; SPIE Bd.1417, Free Space Laser Communication Technologies III (1991) 300

    Article  Google Scholar 

  38. T.R. Steele: Introduction to diode-pumped solid-state lasers; Lightwave technical information; Lightwave Electr. Corp., 1993, S. 7

    Google Scholar 

  39. T.J. Kane, EAP. Cheng: Fast frequency tuning and phase locking of diodepumped Nd:YAG ring lasers; Opt Lett. 13 (1988) 970

    Article  Google Scholar 

  40. I. Schütz, H. Welling, R. Wallenstein: Electrooptically fast tunable miniature diode laser pumped Nd:YAG ring oscillator; CLEO 90, Tech. Digest. Beitrag CMA6 (1990) 6

    Google Scholar 

  41. T. Day, E.K. Gustafson, R.L. Byer: Active frequency-stabilization of a 1.062-μm, Nd:GGG diode-laser-pumped nonplanar ring oscillator to less than 3 Hz of relative linewidth; Opt. Lett. 15 (1990) 221

    Article  Google Scholar 

  42. E.C. Rea Jr., D. Craven, A.C. Nielsson, R.L. Byer: Single frequency, unidirectional, monolithic Nd:glass nonplanar ring laser; CLEO 89, Tech. Digest, Beitrag WH4 (1989) 222

    Google Scholar 

  43. K.J. Williams, L. Goldberg, R.D. Esman, M. Dagenais, J.F. Weiler: 6–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers; Electron. Lett. 25 (1989) 1242

    Article  Google Scholar 

  44. T.J. Kane, T.S. Kubo, R.W. Wallace: Diode-pumped, injection-seeded Tm:YAG laser; in: IEEE Lasers and Electro-Optics Society Annual Meeting, 1990, Tech. Digest, Beitrag SSL1.3/ThL3 (1990) 514

    Google Scholar 

  45. T.J. Kane, T.S. Kubo: Diode-pumped single-frequency lasers and Q-switched lasers using Tm:YAG and Tm:Ho:YAG; OSA Proc. on Advanced Solid-State Lasers (Salt Lake City, 990), Bd. 6 (1991) 136

    Google Scholar 

  46. R. Roy, P.A. Schulz, A. Walther: Acousto-optic modulator as an electronically selectable unidirectional device in a ring laser; Opt. Lett. 12 (1987) 672

    Article  Google Scholar 

  47. J. Neev, F.V. Kowalski: Unidirectional device for a ring laser using an acoustooptic modulator; Opt. Lett. 13 (1988) 375

    Article  Google Scholar 

  48. W.A. Clarkson, D.C. Hanna: Single frequency q-switched operation of a Nd:YLF ring laser; Opt. Commun. 84 (1991) 51

    Article  Google Scholar 

  49. M.K. Reed, W.K. Bischel: Acousto-optic modulators as unidirectional devices in ring lasers; CLEO 92, Tech. Digest, Beitrag CWG 38 (1992) 284

    Google Scholar 

  50. V. Evtuhov, A.E. Siegman: A “twisted-mode” technique for optaining axially uniform energy density in a laser cavity; Appl. Opt. 4 (1965) 142

    Article  Google Scholar 

  51. K. Wallmeroth, P. Peuser: High-power, cw, single-frequency, TEM00, diode-pumped Nd:YAG laser; Electron. Lett. 24 (1988) 1086

    Article  Google Scholar 

  52. D.A. Draegert: Efficient single-longitudinal-mode Nd:YAG laser; IEEE J. Quantum Electron. 8 (1972) 235

    Article  Google Scholar 

  53. N.P. Schmitt: Untersuchungen zum effizienten Pumpen von Festkörperlasern mit Halbleiter-Laserdioden; Diplomarbeit, Ludwig-Maximilians-Universität München, 1989

    Google Scholar 

  54. J.M. Plorin: Aufbau eines Laserdioden-gepumpten Nd:YAG-Lasers mit hoher Frequenzstabilität; Diplomarbeit, TU München, 1991

    Google Scholar 

  55. J.M. Plorin, A. Mehnert, P. Peuser, N.P. Schmitt: Laser diode-pumped, actively stabilized 1 W single-frequency-laser for optical measurement and testing; in: Laser in der Technik (Laser 91), Hrsg.: W. Waidelich, Springer-Verlag, Berlin, 1992, S. 103

    Google Scholar 

  56. K. Wallmeroth: Monolithic integrated Nd:YAG laser; Opt. Lett. 15 (1990) 903

    Article  Google Scholar 

  57. J.C. Lee, S.D. Jacobs, T. Gunderman, A. Schmid, T.J. Kessler, M.D. Skeldon: TEM00-mode and single-longitudinal-mode laser operation with a cholesteric liquid-crystal laser end mirror; Opt. Lett. 15 (1990) 959

    Article  Google Scholar 

  58. C.S. Adams, J. Vorberg, J. Mlynek: Single-frequency operation of a diode-pumped lanthanum-neodymium-hexaaluminate laser by using a twisted-mode cavity; Opt. Lett. 18 (1993) 420

    Article  Google Scholar 

  59. S. Heinemann: Laserdioden-gepumpte Mikrokristall-Laser; Diplomarbeit, TU München, 1990

    Google Scholar 

  60. J.J. Zayhowski, A. Mooradian: Microchip lasers; OSA Proc. on Tunable Solid State Lasers (North Falmouth, 1989), Bd. 5 (1989) 288

    Google Scholar 

  61. J.J. Zayhowski, A. Mooradian: Single-frequency microchip Nd lasers; Opt. Lett. 14 (1989) 24

    Article  Google Scholar 

  62. P. Gavrilovic, M.S. O’Neill, K. Meehan, J.H. Zarrabi, S. Singh, W.H. Grodkiewcz: Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd; Appl. Phys. Lett. 60 (1992) 1652

    Article  Google Scholar 

  63. G. Winzer, L. Vite, W. Krühler: Laser emission from miniaturized NdAl3(BO3)4 crystals with directly applied mirrors; IEEE J. Quantum Electron. QE-14 (1978) 840

    Article  Google Scholar 

  64. G. Huber: Miniature Neodymium Lasers; in: Current Topics in Materials Science, Bd.4, Hrsg.: E. Kaldis, North Holland, Amsterdam, 1980, S. 1

    Google Scholar 

  65. G.J. Dixon, L.S. Lingvay, R.H. Jarman: Close-coupled pumping of an intracavity-doubled lithium neodymium tetraphosphate laser; SPIE Bd. 1223, Solid-State Lasers (1990) 291

    Google Scholar 

  66. N.P. Schmitt, P. Peuser, S. Heinemann, A. Mehnert: A model describing the single and multiple line spectra of tunable microcrystal lasers; Optics and Quantum Electron. 25 (1993) 527

    Article  Google Scholar 

  67. J.J. Zayhowski; Thermal Guiding in microchip lasers; OSA Proc. on Advanced Solid-State Lasers (Salt Lake City, 1990), Bd.6 (1991) 9

    Google Scholar 

  68. N.P. Schmitt, S. Heinemann, A. Mehnert, P. Peuser: Abstimmbare Festkörperlaser; in: Laser in der Technik (Laser 93), Hrsg.: W. Waidelich, Springer Verlag, Berlin, 1994, S. 8

    Google Scholar 

  69. R. Scheps, D.F. Heller: Single-mode operation of a standing wave miniature Nd-laser pumped by laser diodes; Appl. Opt. 28 (1989) 5288

    Article  Google Scholar 

  70. A. Eda, K. Shimomura, F. Shimada, K. Yamada, K. Muro: Microchip lasers fabricated by a novel photolithography technique; CLEO 92, Tech. Digest, Beitrag CWG33 (1992) 282

    Google Scholar 

  71. N.P. Schmitt, L. Wetenkamp, P. Steinbach, A. Mehnert, S. Heinemann, P. Peuser: Tunable laser diode pumped Nd:YAG microcrystal lasers at 1.4 μm; IEEE Photon. Tech. Lett. 6 (1994), im Druck

    Google Scholar 

  72. s. [8.2], S. 470

    Google Scholar 

  73. F. Zhou, A. I. Ferguson: Tunable single frequency operation of a diode laser pumped Nd:YAG microchip at 1.3 μm; Electron. Lett. 26 (1990) 490

    Article  Google Scholar 

  74. S. Heinemann, A. Mehnert, N.P. Schmitt, P. Peuser: Diodenlaser-gepumpte Miniatur-Festkörperlaser; Laser und Optoelektronik 24, Nr. 5, Oktober 1992, S. 48

    Google Scholar 

  75. A. Owyoung, P. Esherick: Stress-induced tuning of a diode-excited monolithic Nd:YAG laser; Opt. Lett. 12 (1987) 999

    Article  Google Scholar 

  76. J.J. Zayhowski, A. Mooradian: Frequency-modulated Nd:YAG microchip lasers; Opt. Lett. 14 (1989) 618

    Article  Google Scholar 

  77. A. Yariv, P. Yeh: Optical Waves in Crystals; John Wiley and Sons, New York, 1984

    Google Scholar 

  78. A.M. Prokhorov, Y.S. Kuz’minov: Ferroelectric crystals for laser radiation control; Adam Hilger, Bristol, 1990

    Google Scholar 

  79. P.A. Schulz, S.R. Henion: Frequency-modulated Nd:YAG laser; Opt. Lett. 16 (1991) 578

    Article  Google Scholar 

  80. S.R. Henion, P.A. Schulz: Electrooptically tuned, single frequency Nd:YAG laser; CLEO 90, Tech. Digest, Beitrag CMA4 (1990) 4

    Google Scholar 

  81. J.J. Zayhowski, P.A. Schulz, S.R. Henion: Diode-pumped composite-cavity electro-optically tuned microchip lasers; CLEO 93, Tech. Digest, Beitrag CThR4 (1993) 484

    Google Scholar 

  82. A.A. Kaminskii: Laser and spectroscopic properties of activated ferroelectrics; Sov. Phys. Crystallography 17 (1972) 194

    Google Scholar 

  83. L.F. Johnson, A.A. Ballman: Coherent emission from rare earth ions in electrooptic crystals; J. Appl. Phys.40 (1969) 297

    Article  Google Scholar 

  84. N. MacKinnon, C.J. Norrie, B.D. Sinclair: Laser diode-pumped electro-optically tunable neodymium oxide lithium niobate (Nd:MgO:LiNbO3) microchip laser; CLEO 93, Tech. Digest, Beitrag CThS12 (1993) 496

    Google Scholar 

  85. J.A. Keszenheimer, K.F. Wall, S.F. Root: Electro-optic frequency modulation of microchip lasers; OSA Conf. on Advanced Solid-State Lasers (New Orleans, 1993), postdeadline paper PD1 (1993)

    Google Scholar 

  86. E. Lallier, J.-P. Pocholle, M. Papuchon, Q. He, M. De Micheli, D.B. Ostrowsky, C. Grezes-Besset, E. Pelletier: Integrated Nd:MgO:LiNbO3 FM mode-locked waveguide laser; Electron. Lett. 27 (1991) 936

    Article  Google Scholar 

  87. E. Lallier, J.P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M.J. Li, Q. He, D.B. Ostrowsky: Laser oscillation of single-mode channel waveguide in Nd:MgO:LiNbO3; Electron. Lett. 27 (1991) 1491

    Article  Google Scholar 

  88. T.Y. Fan, A. Cordova-Plaza, M.J.F. Digonnet, R.L. Byer, H.J. Shaw: Nd:MgO:LiNbO3 spectroscopy and laser devices; J. Opt. Soc. Am. B 3 (1986) 140

    Article  Google Scholar 

  89. J.J. Zayhowski, J.A. Keszenheimer: Frequency tuning of microchip lasers using pump-power modulation; IEEE J. Quantum Electron. 28 (1992) 1118

    Article  Google Scholar 

  90. N.P. Schmitt, S. Heinemann, A Mehnert, P. Peuser: Diode-laser pumped miniature solid state lasers; in: Laser in der Technik (Laser 91), Hrsg.: W. Waidelich, Springer-Verlag, Berlin, 1992, S. 599

    Google Scholar 

  91. J.P. Cuthbertson, G.J. Dixon: Pump resonant excitation of the 946 nm Nd:YAG laser; Opt. Lett. 16 (1991) 396

    Article  Google Scholar 

  92. J.H. Zarrabi, P. Gavrilovic, J.E. Williams, M.S. O’Neill, S. Singh: Single-frequency, diode-pumped, neodymium-doped lanthanium oxysulfide microchip laser; CLEO 93, Tech. Digest, Beitrag CFE3 (1993) 588

    Google Scholar 

  93. P. Laporta, S. Taccheo, S. Longhi, O. Svelto, G. Sacchi: Diode-pumped microchip Er-Yb:glass laser; Opt. Lett. 18 (1993) 1232

    Article  Google Scholar 

  94. M.E. Storm, G.J. Koch, W.W. Rohrbach: Single mode lasing of Ho:Tm:YAG at 2.091 μm in a monolithic crystal; OSA Proc. on Advanced Solid-State Lasers (Salt Lake City, 1990), Bd.6 (1991) 140

    Google Scholar 

  95. M.E. Storm, W.W. Rohrbach: Single-longitudinal-mode lasing of Ho:Tm:YAG at 2.091 μm; Appl. Opt. 28 (1989) 4965

    Article  Google Scholar 

  96. G.J. Koch, J.P. Deyst, M.E. Storm: Single-frequency lasing of monolithic Ho,Tm:YLF; Opt. Lett. 18 (1993) 1235

    Article  Google Scholar 

  97. S.W. Henderson, P.J.M. Suni, C.P. Hale: Diode-pumped 2 μm sources for laser radar; CLEO 92, Tech. Digest, Beitrag CMD3 (1992) 20

    Google Scholar 

  98. C.D. Nabors, A. Sanchez, A. Mooradian: High-power Nd:YAG microchip laser array; LEOS 92, Conf. Proc., Beitrag SSLT6.4 (1992) 495

    Article  Google Scholar 

  99. C.D. Nabors: Coherent coupling of microchip arrays; LEOS 92, Conf. Proc., Beitrag SSLT7.1 (1992) 497

    Google Scholar 

  100. C.D. Nabors, J.J. Zayhowski, R.L. Aggarwal, J.R. Ochoa, J.L. Daneu, A. Mooradian: High-power Nd:YAG microchip arrays; OSA Proc. on Advanced Solid-State Lasers (Santa Fe, 1992), Bd. 13 (1992) S. 234

    Google Scholar 

  101. I. Chartier, B. Ferrand, D. Pelenc, S.J. Field, D.C. Hanna, A.C. Large, D.P. Shepherd, A.C. Tropper: Growth and low-threshold laser oscillation of an epitaxially grown Nd:YAG waveguide; Opt. Lett. 17 (1992) 810

    Article  Google Scholar 

  102. [8.2], S. 466

    Google Scholar 

  103. J.J. Zayhowski: The effects of spatial hole burning and energy diffusion on the single-mode operation of standing wave lasers; IEEE J. Quantum Electron. 26 (1990) 2052

    Article  Google Scholar 

  104. J.J. Zayhowski: Limits imposed by spatial hole burning on the single-mode operation of standing-wave cavities; Opt. Lett. 15 (1990) 431

    Article  Google Scholar 

  105. G.J. Kintz, T. Baer: Single-frequency operation in solid state laser materials with short absorption depths; IEEE J. Quantum Electron. 26 (1990) 1457

    Article  Google Scholar 

  106. H. Imai, M. Daimon: Single-mode laser using a Nd:YVO4 crystal 100 μm thick in a 50 mm long cavity; CLEO 93, Tech. Digest, Beitrag CWJ27 (1993) 304

    Google Scholar 

  107. M. Saratuwatari, T. Kimura, K. Otsuka: Miniaturized cw LiNdP4O12 laser pumped with a semiconductor laser; Appl. Phys. Lett. 29 (1976) 291

    Article  Google Scholar 

  108. K. Kubodera, K. Otsuka: Efficient LiNdP4O12 lasers pumped with a laser diode; Appl. Opt. 18 (1979) 3882

    Article  Google Scholar 

  109. K. Kubodera, J. Noda: Pure single-mode LiNdP4O12 solid-state laser transmitter for 1.3-μm fiber-optic communications; Appl. Opt. 21 (1982) 3466

    Article  Google Scholar 

  110. G.J. Dixon, R.H. Jarman: Properties of miniature lithium neodymium tetraphosphate microlasers with high intensity IR pumping, CLEO 89, Tech. Digest, Beitrag TUJ62 (1989) 112

    Google Scholar 

  111. A.L. Schawlow, L.H. Townes: Infrared and optical masers; Phys. Rev. 112 (1958) 1940

    Article  Google Scholar 

  112. N. Uehara, K.I. Ueda: 193-mHz beat linewidth of frequency-stabilized laser-diode-pumped Nd:YAG ring lasers; Opt. Lett. 18 (1993) 505

    Article  Google Scholar 

  113. D. Shoemaker, A. Brillet, C.N. Man, O. Cregut, G. Kerr: Frequency-stabilized laser-diode-pumped Nd:YAG laser; Opt. Lett. 14 (1989) 609

    Article  Google Scholar 

  114. D. Hils, J. Hall: Response of a Fabry-Perot-cavity to phase modulated light; Rev. Sci. Instrum. 58 (1987) 1406

    Article  Google Scholar 

  115. G.A. Kerr, N.A. Robertson, J. Hough, C.N. Man: The fast frequency stabilisation of an argon laser to an optical resonator using an extra-cavity electro-optic modulator; Appl. Phys. B 37 (1985) 11

    Article  Google Scholar 

  116. K.-D. Salewski: private Mitteilung, Universität Greifswald, 1994

    Google Scholar 

  117. W. Demtröder: Laser Spectroscopy; 2. Auflage, Springer-Verlag, Berlin, 1982, S. 296

    Google Scholar 

  118. F. Zhou, A.I. Ferguson: Frequency stabilization of a diode-laser-pumped microchip Nd:YAG laser at 1.3 μm; Opt. Lett. 16 (1991) 79

    Article  Google Scholar 

  119. R.V. Pound: Electronic frequency stabilization of microwave oscillators; Rev. Sci. Instr. 17 (1946) 490

    Article  Google Scholar 

  120. A.S.W. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward: Laser phase and frequency stabilization using an optical resonator; Appl. Phys. B 31 (1983) 97

    Article  Google Scholar 

  121. T.W. Hänsch, B. Couillaud: Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity; Opt. Commun. 35 (1980) 441

    Article  Google Scholar 

  122. D. Hills, J.L. Hall: Response of a Fabry-Perot cavity to phase modulated light; Rev. Sci. Instrum. 58 (1987) 1406

    Article  Google Scholar 

  123. Ch. Salomon, D. Hills, J.L. Hall: Laser stabilization at the millihertz level; J. Opt. Soc. Am. B 5 (1988) 1576

    Article  Google Scholar 

  124. T. Day, A.C. Nilsson, M.M. Fejer, A.D. Farinas, E.K. Gustafson, C.D. Nabors, R.L. Byer: 30 Hz-linewidth, diode-laser-pumped Nd:GGG nonplanar ring oscillators by active frequency stabilization; Electron. Lett. 25 (1989) 810

    Article  Google Scholar 

  125. R. Müller: Rauschen; Springer-Verlag, Berlin, 1979

    Google Scholar 

  126. D. Shoemaker, A. Brillet, C.N. Man, O. Cregut; private Mitteilung, Paris, 1989

    Google Scholar 

  127. K. Ueda, N. Uehara: Ultrastabilized solid-state lasers for gravitational wave detection; CLEO 93, Tech. Digest, Beitrag CThR3 (1993) 482

    Google Scholar 

  128. S. Gerstenkorn, P. Luc: Atlas du spectre d’absorption de la molecule d’iode; Laboratoire Aimé Cotton, Orsay, Frankreich 1980

    Google Scholar 

  129. A. Arie, E.K. Gustafson, R.L. Byer: Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers using the Doppler-free absorption lines of iodine; CLEO 92, Tech. Digest (post deadline papers), Beitrag CPD4 (1992)

    Google Scholar 

  130. R. Heilmann, J. Kuschel: Absolute frequency locking of diode-pumped Nd:YAG laser for application in free-space optical communication; Electron. Lett. 29 (1993) 810

    Article  Google Scholar 

  131. K. Wallmeroth, R. Letterer: Cesium frequency standard for lasers at λ=1.06 μm; Opt. Lett. 15 (1990) 812

    Article  Google Scholar 

  132. R. Heilmann, J. Kuschel: Frequency stabilization of diode-pumped solid-state lasers for application in free-space communication; CLEO 93 Tech. Digest, Beitrag CWJ105 (1993) 370

    Google Scholar 

  133. D. Scarl: Absolute wavelength standard for tunable 1341-nm Nd3+:YALO3 laser; OSA Proc. on Tunable Solid State Lasers (North Falmouth, 1989), Bd.5 (1989) 112

    Google Scholar 

  134. D. Scarl: Atomic wavelength reference for a temperature-tunable 1341-nm Nd3+:YALO3 laser; Opt. Lett. 24 (1989) 996

    Article  Google Scholar 

  135. A.L.S. Smith, S. Moffatt: Opto-galvanic stabilized CO2 Laser; Opt. Commun. 30 (1979) 213

    Article  Google Scholar 

  136. W. Seelert, W. Skrlac, H.P. Kortz: 1-W single-frequency diode-pumped Nd:YAG laser system; OSA Proc. on Advanced Solid-State Lasers (Hilton Head, 1991), Bd.10 (1991) 261

    Google Scholar 

  137. O. Cregut, C.N. Man, D. Shoemaker, A Brillet, A Mehnert, P. Peuser, N.P. Schmitt, P. Zeller, K. Wallmeroth: 18 W single-frequency operation of an injection-locked, cw, Nd:YAG laser; Phys. Lett. A 140 (1989) 294

    Article  Google Scholar 

  138. C.D. Nabors, A.D. Farinas, T. Day, S.T. Yang, E.K. Gustafson, R.L. Byer: Injection locking of a 13 W cw Nd:YAG ring laser; Opt. Lett. 14 (1989) 1189

    Article  Google Scholar 

  139. D. Golla, H. Zellmer, I. Freitag, I. Kropke, H Welling: 15 W single-frequency operation of a cw, diode laser-pumped Nd:YAG ring laser; CLEO 93 Tech. Digest, Beitrag CThR1 (1993) 480

    Google Scholar 

  140. G.T. Maker, A.L. Ferguson: Single-frequency Q-switched operation of a diode-laser-pumped Nd:YAG laser; Opt. Lett. 13 (1988) 461

    Article  Google Scholar 

  141. L.J. Bromley, D.C. Hannar: Single-frequency q-switched operation of a diode-laser-pumped Nd:YAG ring laser using an acousto-optic modulator; Opt. Lett. 16 (1991) 378

    Article  Google Scholar 

  142. W.A. Clarkson, D.C. Hannar: Acousto-optically induced Q-switched operation of a miniaturized diode-pumped Nd:YLF ring laser; CLEO 91 Tech. Digest, Beitrag CFJ1 (1991) 522

    Google Scholar 

  143. J.J. Zayhowskir: Pulsed operation of microchip lasers; OSA Proc. on Advanced Solid-State Lasers (Hilton Head, 1991), Bd.10 (1991) 265

    Google Scholar 

  144. J.J. Zayhowski, J. Ochoa, A Mooradian: Gain-switched pulsed operation of microchip lasers; Opt. Lett. 14 (1989) 1318

    Article  Google Scholar 

  145. A. Owyoung, G.R. Hadley, P. Esherick, R.L. Schmitt, L.A. Rahnr: Gain switching of a monolithic single-frequency laser-diode-excited Nd:YAG laser; Opt. Lett. 10 (1985) 484

    Article  Google Scholar 

  146. J.J. Zayhowski, C. Dill III.: Diode-pumped microchip lasers electro-optically Q-switched at high pulse repetition rates; Opt. Lett. 17 (1992) 1201

    Article  Google Scholar 

  147. J.E. Bernard, V.D. Lokhnygin, A.J. Alcockr: Grating-tuned, single-longitudinal-mode, diode-pumped Nd:YVO4 laser; Opt. Lett. 18 (1993) 2020

    Article  Google Scholar 

  148. K.D. Salewski, A. Wolfram, K.H. Bechstein, W. Fuchs, N.P. Schmitt: Absolute Distanzinterferometrie (ADI) mit abstimmbaren Festkörperlasern; 95. Jahrestagung der Deutschen Gesellschaft für angewandte Optik, 24.–28. Mai 1994, Berchtesgaden, Vortrag B 29

    Google Scholar 

  149. K. Danzmann, H. Ruder: Gravitationswellen; Phys. Bl. 49, Nr. 2 (1993) 103

    Google Scholar 

  150. D. Shoemaker, W. Winkler, K. Maischberger, A. Rüdiger, R. Schilling, L. Schnupp: Progress with the Garching 30-meter prototype for a gravitational wave detector; presented at the Fourth Grossmann Meeting, Rom, Juni 1985

    Google Scholar 

  151. W. Winkler, K. Maischberger, A. Rüdiger, R. Schilling, L. Schnupp, D. Shoemaker: Plans for a large gravitational wave antenna in Germany; Fourth Grossmann Meeting, Rom, Juni 1985

    Google Scholar 

  152. Ch. Werner, V. Klein, K. Weber: Luftschadstoffinessungen mit Laser; Springer-Verlag, Berlin, 1993

    Google Scholar 

  153. R. Kramer, H. Müller, D. Dopheide, J. Czarske, N.P. Schmitt: LDV-system with frequency shift using two modes of a Nd:YAG micro crystal laser; Seventh int. symp. on application of laser techniques to fluid mechanics, Lissabon, Juli 1994

    Google Scholar 

  154. T. Chin, R.C. Morris, O. Kafri, M. Long, D.F. Heller: Athermal Nd:BEL lasers; SPIE Bd. 622, High Power and Solid State Lasers (1986) 53

    Google Scholar 

  155. W. Holzapfel, M. Finnemann: High-resolution force sensing by a diode-pumped Nd:YAG laser; Opt Lett. 18 (1993) 2062

    Article  Google Scholar 

Literatur

  1. nach R.L. Byer: Diode laser-pumped solid-state lasers; Science 239 (1988) 742

    Article  Google Scholar 

  2. W.R. Trutna, Jr., D.K. Donald, M. Nazarathy: Quasiplanar unidirectional ring laser; CLEO 87, Tech. Digest, Beitrag WN2 (1987) 188

    Google Scholar 

  3. T.J. Kane, E.A.P. Cheng: Fast frequency tuning and phase locking of diode-pumped Nd:YAG ring lasers; Opt. Lett. 13 (1988) 970. Mit Genehmigung der Optical Society of America und T.J. Kane.

    Article  Google Scholar 

  4. mit Genehmigung von Ch. Werner, DLR Oberpfaffenhofen

    Google Scholar 

  5. S. Heinemann, A. Mehnert, P. Peuser, N.P. Schmitt: Laserdiodengepumpte Mikrokristall-Laser für die optische Meß- und Prüftechnik; Laser Magazin 3 (1992) 26

    Google Scholar 

  6. D. Shoemaker, A Brillet, C.N. Man, O. Cregut, G. Kerr: Frequency-stabilized laser-diode-pumped Nd:YAG laser; Opt. Lett. 14 (1989) 609. Mit Genehmigung der Optical Society of America und A. Brillet.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peuser, P., Schmitt, N.P. (1995). Single-frequency-Laser. In: Diodengepumpte Festkörperlaser. Laser in Technik und Forschung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85190-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85190-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85191-9

  • Online ISBN: 978-3-642-85190-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics