Skip to main content

Festkörperlaser-Materialien

  • Chapter
  • 147 Accesses

Part of the book series: Laser in Technik und Forschung ((LASER TECHNIK))

Zusammenfassung

Wie eingangs schon erwälint wurde, läßt sich mit einigen wenigen Dioden-lasertypen durch die Kombination mit verschiedenen Festkörperlaser-Materialien eine Vielzahl von Laserwellenlängen erzeugen, wobei sich dann auch gänzlich andere Lasereigenschaften ergeben können, wie z. B. hohe Strahlqualität, hohe Leistungen, kurze Pulse, oder auch über breite Wellenlängenintervalle abstimmbare diodengepumpte Festkörperlaser möglich werden. Dies alles wird durch die Wahl des aktiven Mediums entscheidend bestimmt. Dabei können mehrere Kriterien für ein gutes Lasermaterial aufgezählt werden: wünschenswert sind insbesondere a) ein großer Emissions- und Absorptionswirkungsquerschnitt, b) eine lange Fluoreszenzlebensdauer, c) eine gute optische Qualität, d) eine hohe Wärmeleitfähigkeit, e) eine große mechanische Härte, f) ein geringer thermischer Ausdehnungskoeffizient, g) eine geringe thermische Abhängigkeit des Brechungsindex, h) ein leichtes Kristallzüchten von möglichst großer Kristallen, i) eine gute Bearbeitbarkeit und nicht zuletzt, für das Diodenpumpen besonders wichtig, j) eine breite Absorptionslinie, die möglichst nahe bei der Emissionswellenlänge liegen sollte.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. W. Koechner: Solid-State Laser Engineering; Springer-Verlag, Berlin, 1976

    Google Scholar 

  2. W. Koechner: Solid-State Laser Engineering; Springer-Verlag, Berlin, 1988

    Google Scholar 

  3. W. Koechner: Solid-State Laser Engineering; Springer-Verlag, Berlin, 1992

    Google Scholar 

  4. A.A. Kaminskii: Laser Crystals; Springer-Verlag, Berlin, 1981

    Google Scholar 

  5. G. Huber, W.W. Krühler, W. Bludau, H.G. Danielmeyer: Anisotropy in the laser performance of NdP5O14; J. Appl. Phys. 46 (1975) 3580

    Google Scholar 

  6. S.A Payne, L.L. Chase, L.K. Smith, W.L. Kway, W.F. Krupke: Infrared cross-section measurements for crystals doped with Er3+, Tnr3+, and Ho3+; IEEE J. Quantum Electron. 28 (1992) 2619

    Google Scholar 

  7. L.L. Chase, L.E. Davis, W.F. Krupke, S.A Payne: Materials for diode pumped solid state lasers; Proc. Conf. on Lasers in Materials Processing, Medicine and Physics, Grenoble, 9.–11. Juli 1991 (Lawrence Livermore Nat. Lab., Report-Nr. UCRL-JC--107363)

    Google Scholar 

  8. T.Y. Fan: Optimizing the efficiency and stored energy in quasi-three-level lasers; IEEE J. Quantum Electron. 28 (1992) 2692

    Google Scholar 

  9. T. Miyakawa, D.L. Dexter: Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids; Phys. Rev. B 1 (1970) 2961

    Google Scholar 

  10. D.L. Dexter: A theory of sensitized luminescence in solids; J. Chem. Phys. 21 (1953) 836

    Google Scholar 

  11. L.A Riseberg, W.B. Gandrud, H.W. Moos: Multiphonon relaxation of near-infrared excited states of LaCl3:Dy3+; Phys. Rev. 159 (1967) 262

    Google Scholar 

  12. L.A Riseberg, H.W. Moos: Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals; Phys. Rev. 174 (1968) 429

    Google Scholar 

  13. R. Reisfeld: Luminescence and prediction of transition probabilities for solar energy and lasers; J. Less-Common Metals 112 (1985) 9

    Google Scholar 

  14. C.B. Layne, W.H Lowderrnilk, M.J. Weber: Multiphonon relaxation of rare-earth ions in oxide glasses; Phys. Rev. B 16 (1977) 10

    Google Scholar 

  15. J.A. Caird, L.G. DeShazer, J. Nella: Characteristics of room-temperature 2.3 μm laser emission from Tm3+ in YAG and YAlO3; IEEE J. Quantum Electron. QE-11 (1975) 874

    Google Scholar 

  16. L. Wetenkamp: Charakterisierung von laseraktiv dotierten Schwermetallfluorid-Gläsern und Faserlasern; Dissertation, Technische Universität Braunschweig, 1991

    Google Scholar 

  17. R. Reisfeld, C.K. Joergensen: Lasers and Excited States of Rare Earths; Springer-Verlag, Berlin, 1977

    Google Scholar 

  18. N. Sims, M.G. Jani, N.P. Barnes: Laterally diode pumped, c-axis Nd:YLF laser; OSA Conf. on Advanced Solid-State Lasers (New Orleans, 1993), Tech. Digest, Beitrag AMB8 (1993) 38

    Google Scholar 

  19. L.R. Marshall, A. Kaz, H.R. Verdun: Power scaling and wavelength conversion of cw diode-pumped lasers; OSA Conf. on Advanced Solid-State Lasers (New Orleans, 1993), Tech. Digest, Beitrag AMD3 (1993) 78

    Google Scholar 

  20. T. Chuang, H.R. Verdun: Energy transfer up-conversion and excited state absorption of 1.047 urn laser radiation in Nd:YLF laser crystals pumped in the 800 nm region; OSA Conf. on Advanced Solid-State Lasers 1994 (Salt Lake City, 1994), Tech. Digest, Beitrag AWC4 (1994) 239

    Google Scholar 

  21. H.G. Danielmeyer: Stoichiometric laser materials; in: Festkörperprobleme, Advances in Solid State Physics Bd. XV (1975) 253 (Pergamon/Vieweg, Braunschweig, 1975)

    Google Scholar 

  22. H.P. Weber: Nd pentaphosphate lasers; Optical and Quantum Electron. 7 (1975) 431

    Google Scholar 

  23. G. Huber: Miniature neodymium lasers; in: Current Topics in Material Science Bd. 4, Hrsg.: E. Kaldis, North Holland Pub. Comp., Amsterdam, 1980, S.1

    Google Scholar 

  24. S.A. Kutovoi, V.V. Laptev, S.Yu. Matsnev: Lanthanum scandoborate as a new highly efficient active medium of solid-state lasers; Sov. J. of Quantum Electron. 21(1991)131

    Google Scholar 

  25. J.-P. Meyn, T. Jensen, G. Huber: Diode laser-pumped Nd:LaSc3(BO3)4 laser with high efficiency; CLEO 93, Tech. Digest, Beitrag CPD9 (1993) 686

    Google Scholar 

  26. J.-P. Meyn, T. Jensen, G. Huber: Spectroscopic properties and efficient diode-pumped laser operation of neodymium doped lanthanum scandium borate; IEEE J. Quantum Electron. 30 (1994) 913

    Google Scholar 

  27. B. Beier, J.-P. Meyn, R. Knappe, K.-J. Boller, G. Huber, R. Wallenstein: A 180 mW Nd:LaSc3(BO3)4 single-frequency TEM00 microchip laser pumped by an injection-locked diode-laser array; Appl. Phys. B 58 (1994) 381

    Google Scholar 

  28. J.-P. Meyn, B. Beier, R. Knappe, K.-J. Boller, G. Huber, R. Wallenstein: Efficient and single frequency Nd:LaSc3(BO3)4 microchip lasers; Konferenzbeitrag zur CLEO 1994

    Google Scholar 

  29. V.G. Ostroumov, J.A. Shcherbakov, A.J. Zagumennyi: Nd:GdVO4 — a new material for diode-pumped solid-state lasers; OSA Conf. on Advanced Solid-State Lasers (New Orleans, 1993), Tech. Digest, Beitrag AMC1 (1993) 52

    Google Scholar 

  30. T. Jensen, J.-P. Meyn, G. Huber, V. Ostroumov, A.J. Zagumennyi, J.A. Shcherbakov: Spectroscopic properties and lasing of NdrGdVO4 pumped by a diode laser and a Ti:sapphire; CLEO 93, Tech. Digest, Beitrag CFE4 (1993) 590

    Google Scholar 

  31. X.X. Zhang, M. Bass, J. Lefaucheur, A. Pham, A.B. Villaverde, B.H.T. Chai: Laser performance of a new laser crystal — Nd:GdLiF4; OSA Conf. on Advanced Solid-State Lasers (New Orleans, 1993), Tech. Digest (1993) 55

    Google Scholar 

  32. H. Weidner, R.E. Peale, X.X. Zhang, M. Bass, B.H.T. Chai: Comparison of Nd3+ in GdLiF4 and YLiF4 by Fourier spectroscopy; OSA Conf. on Advanced Solid-State Lasers (New Orleans, 1993), Tech. Digest (1993) 47

    Google Scholar 

  33. V.G. Ostroumov, E.V. Zharikov, I.A. Shcherbakov, G.B. Loutts, A.I. Zagumenny, C. Pfistner, P. Albers, H.P. Weber: Spectroscopic and laser properties of Sc garnet mixtures doped by Cr3+ and Nd3+ ions; OSA Proc. on Advanced Solid-State Lasers (Santa Fe, 1992), Bd. 13 (1992) 310

    Google Scholar 

  34. E.V. Zharikov, I.A. Shcherbakov: New Sc garnet mixtures for solid-state lasers; OSA Proc. on Advanced Solid-State Lasers (Santa Fe, 1992), Bd. 13 (1992) 315

    Google Scholar 

  35. K. Naito, A. Yokotani, T. Sasaki, M. Yamanaka, S. Nakai, T. Fukuda, M.I Timoschechkin: Laser diode-pumped Nd3+ calcium niobium gallium garnet laser; OSA Proc. on Advanced Solid-State Lasers (Santa Fe, 1992), Bd. 13 (1992) 202

    Google Scholar 

  36. H.R. Verdun, L.R. Black, G.F. de la Fuente, D.M. Andrauskas: Growth and characterization of Nd-doped aluminates and gallates with the mellilite structure; OSA Proc. on Tunable Solid-State Lasers (North Falmouth, 1989) Bd. 5 (1989) 405

    Google Scholar 

  37. F. Hanson, D. Dick, H.R. Verdun, M. Kokta: Optical properties and lasing in Nd:SrGdGa3O7; J. Opt. Soc B 8 (1991) 1668

    Google Scholar 

  38. A.R. Reinberg, L.A Riseberg, R.M. Brown, R.W. Wacker, W.C. Holton: GaAs:Si LED pumped Yb-doped YAG laser; Appl.Phys. Lett. 19 (1971) 11

    Google Scholar 

  39. P. Lacovara, C.A. Wang, H.K. Choi, R.L. Aggarwal, T.Y. Fan: Room-temperature InGaAs diode-pumped Yb:YAG laser; OSA Proc. on Advanced Solid-State Lasers (Hilton Head, 1991), Bd.10 (1991) 283

    Google Scholar 

  40. L.D. DeLoach, S.A. Payne, L.L. Chase, L.K. Smith, W.L. Kway, W.F. Krupke: Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications; IEEE J. Quantum Electron. 29 (1993) 1179

    Google Scholar 

  41. T.Y. Fan, S. Klunk, G. Henein: Diode-pumped Q-switched Yb:YAG laser; Opt. Lett. 18 (1993) 423

    Google Scholar 

  42. P. Lacovara: Diode-Pumped Yb:YAG Lasers; LEOS 92, Conf. Proc, Beitrag SSLT6.2 (1992) 491

    Google Scholar 

  43. T.Y. Fan, P.A. Schulz: Aperture guiding in cw, quasi-three-level Yb:YAG lasers; CLEO 93, Tech. Digest, Beitrag CFM2 (1993) 640

    Google Scholar 

  44. S.A. Payne, W.F. Krupke, L.K. Smith: Laser properties of Yb-doped fluorapatite; OSA Proc. on Advanced Solid-State Lasers (Santa Fe, 1992), Bd. 13 (1992) 227

    Google Scholar 

  45. B.W. Woods, S.A. Payne, J.E. Marion, R.S. Hughes, L. E. Davis: Thermomechanical and thermo-optical properties of the LiCaAlF6:Cr3+ laser material; J. Opt. Soc. Am. B8 (1991) 970

    Google Scholar 

  46. R. Scheps, B.M. Gately, J.F. Myers, D.F. Heller, J.S. Krasinski: Laser diode pumped tunable solid state laser; SPIE Bd. 1223, Solid State Lasers (1990) 189

    Google Scholar 

  47. R. Scheps, B.M. Gately, J.F. Myers, J.S. Krasinski, D.F. Heller; Alexandrite laser pumped by semiconductor lasers; Appl. Phys. Lett. 56 (1990) 2288

    Google Scholar 

  48. R. Scheps, J.F. Myers, T.R. Glesne, H.B. Serreze: Monochromatic end-pumped operation of an alexandrite laser; Opt. Commun. 97 (1993) 363

    Google Scholar 

  49. S.A. Payne, L.L. Chase, H.W. Newkirk, L.K. Smith, W.F. Krupke: LiCaAlF6:Cr3+; A promising new solid-state laser material; IEEE J. Quantum Electron. 24 (1988) 2243

    Google Scholar 

  50. S.A. Payne, L.L. Chase, L.K. Smith, W.L. Kway, H.W. Newkirk: Laser performance of LiSrAlF6:Cr3+; J. Appl. Phys. 66 (1989) 1051

    Google Scholar 

  51. L.K. Smith, S.A. Payne, L.L. Chase, W.L. Kway, B.H.T. Chai: LiSrGaF6 — a new laser material of the colquiriite structure; CLEO 91, Tech. Digest, Beitrag CThH1 (1991) 388

    Google Scholar 

  52. L.K. Smith, S.A. Payne, W.L. Kway, L.L. Chase, B.H.T. Chai: Investigation of the laser properties of Cr3+:LiSrGaF6; IEEE J. Quantum Electron. 28 (1992) 2612

    Google Scholar 

  53. N.H Rizvi, P.M.W. French, J.R. Taylor, P.J. Delfyett, L.T. Florez: Generation of pulses as short as 93 fs from self-starting femtosecond Cr:LiSrAlF6 lasers by exploiting multiple-quantum-well absorbers; Opt. Lett. 18 (1993) 983

    Google Scholar 

  54. M. Richardson, V. Castillo, P. Beaud, M. Bass, B. Chai, G. Quarles, W. Ignatuk: LiSAF: The next wave in tunability; Photonics Spectra, Oct. 1993, S.86

    Google Scholar 

  55. M.D. Perry, S.A. Payne, T. Ditmire, R. Beach, G.J. Quarles, W. Ignatuk, R. Olson, J. Weston: Better materials trigger Cr:LiSAF laser development; Laser Focus World, Sept. 1993, S. 85

    Google Scholar 

  56. W.R. Rapoport: Excited-state absorption and upconversion in Cr:LiSAF; OSA Proc. on Advanced Solid-State Lasers (Santa Fe, 1992), Bd. 13 (1992) 21

    Google Scholar 

  57. M.A. Noginov, H.P. Jenssen, A. Cassanho: Upconversion in Cr:LiSGaF and Cr:LiSAF; OSA Conf. on Advanced Solid-State Lasers (New Orleans, 1993), Tech. Digest, Beitrag ATuF4 (1993) 279

    Google Scholar 

  58. G.J. Dixon. Q. Zhang, B.H.T. Chai; Postdeadline Papers, Sixth Interdisciplinary Laser Science Conference, American Physical Society, New York, Beitrag B3–1 (1990)

    Google Scholar 

  59. Q. Zhang, B.H.T. Chai, G.J. Dixon: Laser-pumped Cr:LiSAF laser; CLEO 91, Tech. Digest, Beitrag CThR6 (1991) 430

    Google Scholar 

  60. R. Scheps, J.F. Myers, H.B. Serreze, A. Rosenberg, R.C. Morris, M. Long: Diode-pumped Cr:LiSrAlF6 laser; Opt. Lett. 16 (1991) 820

    Google Scholar 

  61. Q. Zhang, G.J. Dixon, B.H.T. Chai, P.N. Kean: Electronically tuned diode-laser-pumped Cr:LiSrAlF6 laser; Opt. Lett. 17 (1992) 43

    Google Scholar 

  62. F. Balembois, P. Georges, A. Brun: Quasi-continuous-wave and actively mode-locked diode-pumped Cr3+LiSrAlF6 laser; Opt. Lett. 18 (1993) 1730

    Google Scholar 

  63. P.M.W. French, R. Mellish, J.R. Taylor, P.J. Delfyett, L.T. Florez: Mode-locked all-solid-state diode-pumped Cr:LiSAF laser; Opt Lett. 18 (1993) 1934

    Google Scholar 

  64. S.A. Payne, W.F. Krupke, L.K. Smith, W.L. Kway, L.D. DeLoach, J.B. Tassano: 752 nm wing-pumped Cr:LiSAF laser; IEEE J. Quantum Electron. 28 (1992) 1188

    Google Scholar 

  65. P. Reichert, K. Moore, R. Beach, J. Davin, S. Velsko, P. Thelin, W. Benett, B. Freitas, S. Mitchell, R. Solarz: Microlens conditioned two-dimensional diode array and energy concentrating optic for high-power density applications; CLEO 93, Tech. Digest, Beitrag CWJ57 (1993) 328

    Google Scholar 

  66. M. Stalder, M. Bass, B.H.T. Chai: Thermal quenching of fluorescence in chromium -doped fluoride laser crystals; J. Opt. Soc. Am. B9 (1992) 2271

    Google Scholar 

  67. A. Seilmeier; private Mitteilung, Universität Bayreuth, 1994

    Google Scholar 

  68. R. Scheps: Diode pumped Cr3+:LiCaAlF6 laser; CLEO 91, Tech. Digest, Beitrag CME3 (1991) 36

    Google Scholar 

  69. T.J. Carrig, C.R. Pollock: Tunable, cw operation of a multiwatt forsterite laser; Opt Lett. 16 (1991) 1662

    Google Scholar 

  70. V. Petricevic, A. Seas, R.R. Alfano: Slope efficiency measurements of a chromium-doped forsterite laser; Opt. Lett. 16 (1991) 811

    Google Scholar 

  71. A. Seas, V. Petricevic, R.R. Alfano: Continuous-wave mode-locked operation of a chromium-doped forsterite laser; Opt. Lett. 16 (1991) 1668

    Google Scholar 

  72. G. Onishchukov, W. Hodel, H.P. Weber, V. Mikhailov, B. Minkov: Cw lasing characteristics of high Cr4+ -concentration forsterite; Opt. Commun. 100 (1993) 137

    Google Scholar 

  73. W. Jia, H. Eilers, W.M. Dennis, W.M. Yen, A.V. Shestakov: Performance of a Cr4+:YAG laser in the near infrared; OSA Proc. on Advanced Solid-State Lasers (Santa Fe, 1992), Bd. 13 (1992) 31

    Google Scholar 

  74. H. Eilers, W.M. Dennis, W.M. Yen, S. Kück, K. Petermann, G. Huber, W. Jia: Performance of a Cr: YAG laser; IEEE J. Quantum Electron. 29 (1993) 2508

    Google Scholar 

  75. S. Kück, K. Petermann, G. Huber: Tunable room temperature laser action of Cr4+ -doped Y3ScxAl5-xO12; OSA Conf. on Advanced Solid-State Lasers (Salt Lake City, 1994), Tech. Digest, Beitrag AMB2 (1994) 7

    Google Scholar 

  76. G.T. Maker, A.I. Ferguson: Ti:sapphire laser pumped by a frequency-doubled diode-pumped Nd:YLF laser; Opt. Lett. 15 (1990) 375

    Google Scholar 

  77. J. Harrison, A. Finch, D.M. Rines, G.A. Rines, P.F. Moulton: All-solid-state operation of a cw Ti: Al2O3 laser; OSA Proc. on Advanced Solid-State Lasers (Hilton Head, 1991), Bd. 10 (1991) 147

    Google Scholar 

  78. R. Allen, L. Esterowitz, L. Goldberg, J. Weller, M. Storm: Diode pumped 2 μm holmium laser; Electron. Lett. 22 (1986) 947

    Google Scholar 

  79. T.Y. Fan, G. Huber, R.L. Byer, P. Mitzscherlich: Continuous-wave operation at 2.1 μm of a diode-laser-pumped, Tm-sensitized Ho:Y3Al5O12 laser at 300 K; Opt. Lett. 12 (1987) 678

    Google Scholar 

  80. T.Y. Fan, G. Huber, R.L. Byer, P. Mitzscherlich: Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG; IEEE J. Quantum Electron. 24 (1988) 924

    Google Scholar 

  81. G. Huber, E.W. Duczynski, K. Petermann: Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature; IEEE J. Quantum Electron. 24 (1988) 20

    Google Scholar 

  82. T.J. Kane, T.S. Kubo: Diode-pumped single-frequency lasers and Q-switched laser using Tm:YAG and Tm,Ho:YAG; OSA Proc. on Advanced Solid-State Lasers (Salt Lake City, 1990), Bd. 6 (1991) 136

    Google Scholar 

  83. P.J. Suni, S.W. Henderson: 1-mJ/pulse Tm:YAG laser pumped by a 3-W diode laser; Opt. Lett. 16 (1991) 817

    Google Scholar 

  84. S.R. Bowman, J.G. Lynn, S.K. Searles, B.J. Feldman, J. McMahon, W. Whitney, D. Epp, D.J. Quarles, K.J. Riley: High-average-power operation of a Q-switched diode-pumped holmium laser; Opt. Lett. 18 (1993) 1724

    Google Scholar 

  85. T. Becker, G. Huber: Dynamic properties of 2-μm Tm and Ho lasers; CLEO 91, Tech. Digest, Beitrag CTuO3 (1991) 130

    Google Scholar 

  86. L. Esterowitz: Diode-pumped holmium, thulium, and erbium lasers between 2 and 3μmoperating cw at room temperature; Optical Engineering 29 (1990) 676

    Google Scholar 

  87. B.T. McGuckin, R.T. Menzies: Efficient cw diode-pumped Tm,Ho:YLF laser with tunability near 2.067 urn; IEEE J. Quantum Electron. (1992) 1025

    Google Scholar 

  88. G.J. Koch, J.P. Deyst, M.E. Storm: Single-frequency lasing of monolithic Ho,Tm:YLF; Opt. Lett. 18 (1993) 1235

    Google Scholar 

  89. M.E. Storm: Holmium YLF amplifier performance and the propects for multi-Joule energies using diode-laser pumping; IEEE J. Quantum Electron. 29 (1993) 440

    Google Scholar 

  90. C.D. Nabors, T.Y. Fan, H.K. Choi, G.W. Turner, S.J. Eglash: Holmium laser pumped by 1.9 μm diode laser; CLEO 93, Tech. Digest, Beitrag CPD8 (1993) 16

    Google Scholar 

  91. D.C. Shannon, D.L. Vecht, S. Re, T.J. Kane, R.W. Wallace: High average power diode-pumped lasers near 2 μm; LEOS 92, Conf. Proa, Beitrag SSLT2.1 (1992) 302

    Google Scholar 

  92. R.C. Stoneman, L. Esterowitz: Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers; Opt. Lett. 15 (1990) 486

    Google Scholar 

  93. K.L. Schepler, B.D. Smith, F. Heine, G. Huber: Passive Q-switching and mode-locking of 2-μm lasers; SPIE Bd. 1864, Solid State Lasers IV (1993) 186

    Google Scholar 

  94. H. Saito, S. Chaddha, R.S.F. Chang, N. Djeu: Efficient 1.94-μm laser in YVO4 host; Opt. Lett. 17 (1992) 189

    Google Scholar 

  95. R.C. Stoneman, J.G. Lynn, L. Esterowitz: Direct upper-state pumping of the 2.8 μm-Er3+:YLF laser; IEEE J. Quantum Electron. 28 (1992) 1041

    Google Scholar 

  96. R.C. Stoneman, L. Esterowitz: Efficient resonantly pumped 2.8-μm Er3+:GSGG laser; Opt. Lett. 17 (1992) 816

    Google Scholar 

  97. D.W. Anthon, T.J. Pier: Laser-pumped 3-μm Ho:YAG and Ho:GGG lasers; OSA Proc. on Advanced Solid-State Lasers (Salt Lake City, 1990), Bd. 6 (1991) 251

    Google Scholar 

  98. W.S. Rabinovich, S.R. Bowman, B.J. Feldman, M.J. Winings: Tunable laser pumped 3 μm Ho:YAlO3 laser; IEEE J. Quantum Electron. 27 (1991) 895

    Google Scholar 

  99. S. Nikolov; DLR Oberpfaffenhofen, priv. Mitteilung, Jan. 1994

    Google Scholar 

  100. J.A. Hutchinson: Diode array-pumped Er,Yb:Phosphate glass laser; Appl. Phys. Lett. 60 (1992) 1424

    Google Scholar 

  101. P. Laporta, S. Longhi, S. Taccheo, O. Svelto, G. Sacchi: Single-mode cw erbium-ytterbium glass laser at 1.5 μm; Opt. Lett. 18 (1993) 31

    Google Scholar 

  102. M. Hofer, M.H. Ober, F. Haberl, M.E. Fermann: Characterization of ultrashort pulse formation in passively mode-locked fiber lasers; IEEE J. Quantum Electron. 28 (1992) 720

    Google Scholar 

  103. H. Többen: Neue Faserlaser für das nahe und mittlere Infrarot; Dissertation, Technische Universität Braunschweig, 1993

    Google Scholar 

  104. N.P. Schmitt, S. Heinemann, A. Mehnert, P. Peuser: Diode-laser pumped miniature solid state lasers; Vortrag im Rahmen des 10. int. Kongresses LASER 91, München, 1991

    Google Scholar 

  105. N.P. Schmitt: Untersuchungen zum effizienten Pumpen von Festkörperlasern mit Halbleiter-Laserdioden; Diplomarbeit, Ludwig-Maximilians-Universität München, 1989

    Google Scholar 

  106. A.A. Kaminskii: Laser Crystals; Springer Verlag, Berlin, 2. Aufl., 1990, S. 242ff

    Google Scholar 

  107. A.A. Kaminskii: Laser Crystals; Springer Verlag, Berlin, 2. Aufl., 1990, S. 332

    Google Scholar 

  108. R. Iffländer: Festkörperlaser zur Materialbearbeitung; Springer-Verlag, Berlin, 1990

    Google Scholar 

  109. Hierfür existieren in der Literatur unterschiedliche Werte; die hier angegebenen Daten entsprechen den meistzitierten Werten.

    Google Scholar 

  110. F. Hanson: Laser-diode side-pumped Nd:YALO3 laser at 1.08 and 1.34 μm; Opt. Lett. 14 (1989) 674

    Google Scholar 

  111. Nd:YAP Laser Kristalle; Firmenprospekt der Firma Heraeus, Hanau

    Google Scholar 

  112. L. Schearer, M. Leduc: Tuning characteristics and new laser lines in a Nd:YAP cw laser; IEEE J. Quantum Electron. 22 (1986) 756

    Google Scholar 

  113. A.A. Kaminskii: Laser Crystals; Springer Verlag, Berlin, 2. Aufl., 1990 S. 237/238

    Google Scholar 

  114. A.A. Kaminskii: Laser Crystals; Springer Verlag, Berlin, 2. Aufl., 1990 S. 353

    Google Scholar 

  115. M. Formoni, A. Bulou, J.M. Breteau, J.Y. Gesland, M. Rousseau: Neodymium concentration measurements in Nd:YLF laser rods: a nondestructive method; Appl. Opt. 29 (1990) 1758

    Google Scholar 

  116. T.M. Pollack, W.F. Wing, R.J. Grasso, E.P. Chicklis, H.P. Jenssen: Cw laser operation of Nd:YLF; IEEE J. Quantum Electron. 18 (1982) 159

    Google Scholar 

  117. A.A. Kaminskii: Laser Crystals; Springer Verlag, Berlin, 2. Aufl., 1990, S. 170

    Google Scholar 

  118. D. Milam, M.J. Weber: A.J. Glass: Nonlinear refractive index of fluoride crystals; Appl. Phys. Lett. 31 (1977) 822

    Google Scholar 

  119. H Lundt, WACKER-Chemitronic GmbH, private Mitteilung; April 1989

    Google Scholar 

  120. A.A. Kaminskii: Laser Crystals; Springer Verlag, Berlin, 2. Aufl., 1990, S. 272

    Google Scholar 

  121. Q. Mingxin, D.J. Booth, G.W. Baxter, G.C. Bowkett: Performance of a Nd:YVO4 microchip laser with continuous-wave pumping at wavelengths between 741 and 825 nm; Appl. Opt. 32 (1993) 2085

    Google Scholar 

  122. Neodymium doped yttrium orthovanadate Nd:YVO4; Datenblatt der Firma CASTECH-PHOENIX Inc. (CASIX), Fujian, 350002, P. R. China

    Google Scholar 

  123. R.K. Jain, D.L. Sipes, T.J. Pier, G.R. Hulse: Diode-pumped 1.3 μm Nd:YVO4 laser; CLEO 88, Tech. Digest, Beitrag THB5 (1988) 298

    Google Scholar 

  124. T.Y. Fan, M.R. Kokta: End-pumped Nd:LaF3 and Nd:LaMgAl11O19 lasers; IEEE J. Quantum Electron. 25 (1989) 1845

    Google Scholar 

  125. T.Y Fan, M.R Kokta, D.S. Knowles, A. Cassanho: Spectroscopic and laser studies of Nd-doped materials for diode-pumped lasers; OSA Conf. on Tunable Solid State Lasers (North Falmouth, 1989), Tech. Digest, Beitrag TuC3 (1989) 126

    Google Scholar 

  126. L.D. Schearer, M. Leduc, D. Vivien, A.-M. Lejus, J. Thery: LNA: a new cw Nd laser tunable around 1.05 and 1.08 μm; IEEE J. Quantum Electron. QE-22 (1986) 713

    Google Scholar 

  127. A. Kahn, A.M. Lejus, M. Madsac, J. Thery, D. Vivien: Preparation, structure, optical, and magnetic properties of lanthanide alumínate single crystals (LnMAl11O19); J. Appl. Phys. 52 (1981) 6864

    Google Scholar 

  128. LMA tunable laser crystals at 1.054 and 1.082 μm; Datenblatt der Firma Union Carbide, Washougal, USA, 1990

    Google Scholar 

  129. K. Otsuka, T. Yamada, M. Sarutawatari, T. Kimura: Spectroscopy and laser oscillation properties of lithium neodymium tetraphosphate; IEEE J. Quantum Electron. QE-11 (1975) 330

    Google Scholar 

  130. K. Kubodera, K. Otsuka, S. Miyazawa: Stable LiNdP4O12 miniature laser; Appl. Opt. 18 (1979) 884

    Google Scholar 

  131. W.W. Krühler, R.D. Plättner, W. Stetter: Cw oscillation at 1.05 and 1.32 μm of LiNd(PO3)4 lasers in external resonator and in resonator with directly applied mirrors; Appl. Phys. 20 (1979) 329

    Google Scholar 

  132. K. Kubodera, K. Otsuka: Efficient LiNdP4O12 lasers pumped with a laser diode; Appl. Opt. 18 (1979) 3882

    Google Scholar 

  133. R. Scheps, J. Myers, E.J. Schimitschek, D.F. Heller: Nd:BEL laser pumped by laser diodes; SPIE Bd.898, Miniature Optics and Lasers (1988) 91

    Google Scholar 

  134. T. Chin, R.C. Morris, O. Kafri, M. Long, D.F. Heller: Athermal Nd:BEL; CLEO 86, Tech. Digest, Beitrag WM2 (1986) 212

    Google Scholar 

  135. A.A. Kaminskii: Laser Crystals; Springer Verlag, Berlin, 2. Aufl., 1990, S. 264

    Google Scholar 

  136. R. Scheps: Efficient laser diode pumped Nd lasers; Appl. Opt. 28 (1989) 89

    Google Scholar 

  137. H.P. Jenssen, R.F. Begley, R. Webb, R.C. Morris: Spectroscopic properties and laser performance of Nd3+ in lanthanum beryllate; J. Appl. Phys. 47 (1976) 1496

    Google Scholar 

  138. T.Y. Fan, A. Cordova-Plaza, M.J.F. Digonnet, R.L. Byer, H.J. Shaw: Nd:MgO:LiNbO3 spectroscopy and laser devices; J. Opt. Soc. Am. B 3 (1986) 140

    Google Scholar 

  139. J.O. Tocho, F. Jaque, J.G. Sole: Nd3+ active sites in Nd:MgO:LiNbO3 lasers; Appl. Phys. Lett. 60 (1992) 3206

    Google Scholar 

  140. A.A. Kaminskii: Laser and spectroscopic properties of activated ferroelectrics; Sov. Phys. Cryst. 17 (1972) 194

    Google Scholar 

Kapitel 5

  1. N. Sims, M.G. Jani: Laterally diode pumped c-axis Nd:YLF laser; OSA Conf. on Advanced Solid-State Lasers (New Orleans, 1993), Tech. Digest, Beitrag AMB8 (1993) 38

    Google Scholar 

  2. A. Pfeiffer, Ludwigs-Maximilians-Universität München

    Google Scholar 

  3. T. Chuang, H.R. Verdun: Energy transfer up-conversion and excited state absorption of 1.047 um laser radiation in Nd:YLF laser crystals pumped in the 800 nm region; OSA Conf. on Advanced Solid-State Lasers (Salt Lake City, 1994) Tech. Digest, Beitrag AWC4 (1994) 239

    Google Scholar 

  4. T. Chin, R.C. Morris, O. Kafri, M. Long, D.F. Heller: Athermal Nd:BEL; CLEO 86, Tech. Digest, Beitrag WM2 (1986) 212

    Google Scholar 

  5. W.J. Kozlowsky, T.Y. Fan, R.L. Byer: Diode-pumped monolithic cw Nd:glass laser; CLEO 86, Tech. Digest, Beitrag WG4 (1986) 168

    Google Scholar 

  6. G. Huber, Universität Hamburg

    Google Scholar 

  7. T. Jensen, J.-P. Meyn, G. Huber, V.G. Ostroumov, A.J. Zagumennyi, J.A. Shcherbakov: Spectroscopic properties and lasing of Nd:GdVO4 pumped by a diode laser and a Ti:sapphire; CLEO 93, Tech. Digest, Beitrag CFE4 (1986) 590

    Google Scholar 

  8. X.X. Zhang, M. Bass, J. Lefaucheur, A. Pham, A.B. Villaverde, B.H.T. Chai: Laser performance of a new laser crystal — Nd:GdLiF4; OSA Conf. on Advanced Solid-State Lasers (New Orleans, 1993), Tech. Digest, Beitrag AMC2 (1993) 55

    Google Scholar 

  9. S.A. Payne, W.F. Krupke, L.K. Smith, L.D. DeLoach, W.L. Kway: Laser properties of Yb-doped Fluorapatite; OSA Proc. on Advanced Solid-State Lasers (Santa Fe, 1992), Bd. 13 (1992) 227

    Google Scholar 

  10. S.A. Payne, W.F. Krupke, L.K. Smith, W.L. Kway, L.D. DeLoach: Wing-pumping of the Cr:LiSAF laser material; OSA Proc. on Advanced Solid-State Lasers (Santa Fe, 1992), Bd. 13 (1992) 56

    Google Scholar 

  11. L.K. Smith, S.A. Payne, L.L. Chase, W.L. Kway, B.H.T. Chai: LiSrGaF6:Cr3+ — a new laser material of the colquiriite structure; CLEO 91, Tech. Digest, Beitrag CThH1 (1991) 388

    Google Scholar 

  12. R.C. Stoneman, J.G. Lynn, L. Esterowitz: Laser-pumped 2.8 μm Er3+:GSGG laser; CLEO 91, Tech. Digest, Beitrag CTu06 (1991) 134

    Google Scholar 

  13. S. Nikolov, DLR Oberpfaffenhofen

    Google Scholar 

  14. J. Hecht: Laser action in fibers promises a revolution in communications; Laser Focus World, Feb. 1993, S. 75

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peuser, P., Schmitt, N.P. (1995). Festkörperlaser-Materialien. In: Diodengepumpte Festkörperlaser. Laser in Technik und Forschung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85190-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85190-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85191-9

  • Online ISBN: 978-3-642-85190-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics