Skip to main content

Die physiologische Barrierefunktion des Dünndarmes

  • Conference paper
Ökosystem Darm VI
  • 44 Accesses

Zusammenfassung

Die Bedeutung der epithelialen Barriere des Darmes besteht v. a. in zwei Funktionen. Zum einen schützt sie den Organismus vor dem Eindringen von in der Nahrung enthaltenen Noxen und Antigenen. Diese Schutzfunktion gegen die Umgebung kann bei der enormen Gesamtoberfläche des Darmes in ihrer Bedeutung gar nicht hoch genug eingeschätzt werden. Zum anderen trägt sie zur Aufrechterhaltung des „milieu interieur“ bei. So ist die epitheliale Barriere eine Voraussetzung für die Wirksamkeit vektorieller Transportprozesse. Dieser Zusammenhang ist aus Untersuchungen an auf impermeablen Supporten wachsenden Zellkulturen bekannt, wo die Bildung von „domes“ als Ausdruck von Netto-Ionenresorption an das Vorhandensein eines intakten Schlußleistennetzes geknüpft ist. Ohne epitheliale Barriere würden die gerade resorbierten Ionen sofort wieder zurückströmen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adenis A, Colombel JF, Lecouffe P, Wallaert B, Hecquet B, Marchandise X, Cortot A (1992) Increased pulmonary and intestinal permeability in Crohn’s disease. Gut 33: 678–682

    Article  PubMed  CAS  Google Scholar 

  2. Atisook K, Carlson S, Madara JL (1990) Effects of phlorizin and sodium on glucose-elicited alterations of cell junctions in intestinal epithelia. Am J Physiol 258: C77–85

    PubMed  CAS  Google Scholar 

  3. Atisook K, Madara JL (1991) An oligopeptide permeates intestinal tight junctions at glucose-elicited dilatations. Gastroenterology 100: 719–724

    PubMed  CAS  Google Scholar 

  4. Bentzel CJ, Fromm M, Palant CE, Hegel U (1987) Protamine alters structure and conductance of Necturus gallbladder tight junctions without major effect on the apical membrane. J Membr Biol 95: 9–20

    Article  PubMed  CAS  Google Scholar 

  5. Bentzel CJ, Hainau B, Ho S, Hui SW, Edelman A, Anagnostopoulos T, Benedetti EL (1980) Cytoplasmic regulation of tight-junction permeability: effect of plant cytokinins. Am J Physiol 239: C75–89

    PubMed  CAS  Google Scholar 

  6. Boulpaep EL (1972) Permeability changes of the proximal tubule of Necturus during saline loading. Am J Physiol 222: 517–531

    PubMed  CAS  Google Scholar 

  7. Boulpaep EL, Sackin H (1980) Electrical analysis of intraepithelial barriers. In: Bronner F, Kleinzeller A, Boulpaep EL (eds) Current topics in membranes and transport, vol 13. Academic Press, New York London, pp 169–197

    Google Scholar 

  8. Claude P (1978) Morphological factors influencing transepithelial permeability: A model for the resistance of the zonula occludens. J Membr Biol 39: 219–232

    Article  PubMed  CAS  Google Scholar 

  9. Claude P, Goodenough DA (1973) Fracture faces of zonulae occludentes from tight and leaky epithelia. J Cell Biol 58: 390–400

    Article  PubMed  CAS  Google Scholar 

  10. Duffey ME, Hainau B, Ho S, Bentzel CJ (1981) Regulation of epithelial tight junction permeability by cyclic AMP Nature (London) 294: 451–453

    CAS  Google Scholar 

  11. Fasano A, Baudry B, Pumplin DW, Wasserman SS, Tall BD, Ketley JM, Kaper B (1991) Vibrio cholerae produces a second enterotoxin which affects intestinal tight junctions. Proc Natl Acad Sci USA 88: 5242–5246

    Article  PubMed  CAS  Google Scholar 

  12. Ferguson A (1976) Coeliac disease and gastrointestinal food allergy. In: Immunological aspects of the liver and gastrointestinal tract, MTP Press, Lancaster 1

    Google Scholar 

  13. Ferraris RP, Yasharpour S, Kent Lloyd KC, Mirzayan R, Diamond JR (1990) Luminal glucose concentrations in the gut under normal conditions. Am J Physiol 259: G 822–837

    Google Scholar 

  14. Fine KD, Santa Ana CA, Porter JL, Fordtran JS (1993) Effect of D-glucose on intestinal permeability and its passive absorption in human small intestine in vivo. Gastroenterology 105: 1117–1125

    PubMed  CAS  Google Scholar 

  15. Fromm M, Palant CE, Bentzel CJ, Hegel U (1985) Protamine reversibly decreases parcellular cation permeability in Necturus gallbladder. J Membr Biol 87: 141–150

    Article  PubMed  CAS  Google Scholar 

  16. Fromm M, Schulzke JD (1994) Parazellulärer Nährstofftransport: Fakten and Irrtümer. Zeitschr Gastroenterol 321 (im Druck)

    Google Scholar 

  17. Fromm M, Tykocinski M, Schulzke JD, Hegel U, Bentzel CJ (1990) pH-dependence of protamine action on apical membrane permeability in Necturus gallbladder epithelium. Biochim Biophys Acta 1027: 179–184

    Google Scholar 

  18. Hecht G,. Pothoulakis C, LaMont JT, Madara JL (1988) Clostridium difficile Toxin Aperturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest 82: 1516–1524

    Article  PubMed  CAS  Google Scholar 

  19. Holmes GKT, Prior P, Lane MR, Pope D, Allan RN (1989) Malignancy in coeliac disease — effect of a gluten free diet. Gut 30: 333–338

    Article  PubMed  CAS  Google Scholar 

  20. Lewy JE, Windhager EE (1968) Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am J Physiol 214: 943–954

    PubMed  CAS  Google Scholar 

  21. Madara JL, Pappenheimer JR (1987) Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J Membr Biol 100: 149–164

    Article  PubMed  CAS  Google Scholar 

  22. Madara JL, Parkos C, Colgan S, Nusrat A, Atisook K, Kaoutzani P (1992) The movement of solutes and cells across tight junctions. Ann NY Acad Sci 664: 47–60

    Article  PubMed  CAS  Google Scholar 

  23. May GR, Sutherland LR, Meddings JB (1993) Is small intestinal permeability really increased in relatives of patients with crohn’s disease. Gastroenterology 104: 1627–1632

    PubMed  CAS  Google Scholar 

  24. Moore R, Pothoulakis C, LaMont JT, Carlson S, Madara JL (1990) Clostridium difficile toxin A increases intestinal permeability and induces CI secretion. Am J Physiol 259: G 165–172

    Google Scholar 

  25. Palade GE, Simionescu M, Simionescu N (1979) Structural aspects of the permeability of the microvascular endothelium. Acta Physiol Scand (Suppl) 463: 11–32

    CAS  Google Scholar 

  26. Palant CE, Duffey ME, Mookerjee BK, Ho S, Bentzel CJ (1983) Regulation of tight junction permeability and structure in Necturus gallbladder. Am J Physiol 245: C 203–212

    Google Scholar 

  27. Pappenheimer JR (1987) Physiological regulation of transepithelial impedance in the intestinal mucosa of rats and hamsters. J Membr Biol 100: 137–148

    Article  PubMed  CAS  Google Scholar 

  28. Pappenheimer JR (1993) On the coupling of membrane digestion with intestinal absorption of sugars and amino acids. Am J Physiol 265: G 409–417

    Google Scholar 

  29. Pappenheimer JR, Dahl CE, Karnovsky ML, Maggio JE (1994) Intestinal absorption and excretion of octapeptides composed of D amino acids. Proc Natl Acad Sci USA 91: 1942–1945

    Article  PubMed  CAS  Google Scholar 

  30. Pappenheimer JR, Reiss KZ (1987) Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine. J Membr Biol 100: 123–136

    Article  PubMed  CAS  Google Scholar 

  31. Pappenheimer JR, Volpp K (1992) Transmucosal iumpedance of small intestine: correlation with transport of sugars and amino acids. Am J Physiol 263: C 480–493

    Google Scholar 

  32. Rechkemmer G, Wahl M, Kuschinky W, v. Engelhardt W (1986) pH-Microclimate at the luminal surface of the intestinal mucosa of guinea pig and rat. Pflügers Arch 407: 33–40

    Google Scholar 

  33. Sanderson IR, Boulton P, Menzies I, Walker-Smith JA (1987) Improvement of abnormal lactulose/rhamnose permeability in active crohn’s disease of the small bowel by an elemental diet. Gut 28: 1073–1076

    Article  PubMed  CAS  Google Scholar 

  34. Schultz SG (1977) The role of paracellular pathways in isotonic fluid transport. Yale J Biol Med 50: 99–113

    PubMed  CAS  Google Scholar 

  35. Wyatt J, Vogelsang H, Hubl W, Waldhoer T, Lochs H (1993) Intestinal permeability and the prediction of relapse in Crohn’s disease. Lancet 341: 1437–1439

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schulzke, JD., Fromm, M. (1994). Die physiologische Barrierefunktion des Dünndarmes. In: Caspary, W.F., Kist, M., Zeitz, M. (eds) Ökosystem Darm VI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85187-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85187-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58548-0

  • Online ISBN: 978-3-642-85187-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics