Skip to main content

Gestörte Sekretions- und Resorptionsmechanismen bei Diarrhö

  • Conference paper
Ökosystem Darm VI
  • 44 Accesses

Zusammenfassung

Die Definition der Diarrhö umfaßt die häufige Stuhlentleerung (über 3 pro Tag), eine Verminderung der Konsistenz (Stuhlwassergehalt größer als 85%) und/oder eine Zunahme der Stuhlmenge (auf über 200 g pro Tag). Etwa 9 1 Flüssigkeit gelangen durch orale Aufnahme und Sekretionsvorgänge täglich in den Intestinaltrakt. 90% der Flüssigkeit werden im Dünndarm, 8% im Kolon reabsorbiert, so daß der tägliche Stuhl nur noch 100–200 ml Wasser enthält. Der Wassertransport durch die Epithelschicht erfolgt passiv entsprechend dem osmotischen Gradienten, der vom luminalen Gehalt osmotisch wirksamer Substanzen abhängt. Die Zunahme osmotisch wirksamer Moleküle im Darmlumen kann durch eine verminderte Resorption (osmotische Diarrhö), durch eine gesteigerte Elektrolytsekretion in das Darmlumen (sekretorische Diarrhö) oder durch Ingestion osmotisch wirksamer, aber nicht resorbierbarer Substanzen bedingt sein. Ein weiterer Pathomechanismus der Diarrhö, der Resorptions-und Sekretionsvorgänge nur indirekt beeinflußt, stellt die Störung der intestinalen Motilität dar. Krankheiten können eine Diarrhö über einen oder mehrere Pathomechanismen verursachen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Barrett KE, Dharmsathaphorn K (1991) Secretion and absorption: small intestine and colon. In: Yamada T (ed) Textbook of gastroenterology. Lippincott, Philadelphia, pp 265–294

    Google Scholar 

  2. Barrett KE, Dharmsathaphorn K (1991) Pharmacologic approaches to the therapy of diarrheal diseases. Current topics in Gastroenterology, Elsevier, New York, pp 501–516

    Google Scholar 

  3. Birnbaumer L, Abramowitz J, Brown AM (1990) Receptor-effector coupling by G proteins. Biochim Biophys Acta 1031: 163–224

    PubMed  CAS  Google Scholar 

  4. Boume HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature (London) 348: 125–132

    Article  Google Scholar 

  5. Boume HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature (London) 349: 117–127

    Article  Google Scholar 

  6. Brown DR, Miller RJ (1991) Neurohormonal control of fluid and electrolyte transport in intestinal mucosa. In: Handbook of physiology — the gastrointestinal system. Am Phys Soc Bethesda, pp 527–589

    Google Scholar 

  7. CasparyWF (Hrsg) (1983) Handbuch der Inneren Medizin, Bd 3: Verdauungsorgane Teil 3B, Dünndarm. Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Charney AN, Gots RE, Formal SB, Giannella RA (1976) Activation of intestinal mucosal adenylate cyclase by Shigella dysenteriae I enterotoxin. Gastroenterology 70: 1085–1090

    PubMed  CAS  Google Scholar 

  9. Czerucka D, Roux I, Rampal P (1994) Saccharomyces boulardii inhibits secretagoguemediated adenosine 3’,5’-cyclic monophosphate induction in intestinal cells. Gastroenterology 106: 65–72

    PubMed  CAS  Google Scholar 

  10. DaikokuT, Kawaguchi M, Takama K, Suzuki S (1990) Partial purification and characterization of the enterotoxin produced by Campylobacter jejuni. Infect Immun 58: 2414–2419

    Google Scholar 

  11. Dominguez P, Velasco G, Barros F, Lazo PS (1987) Intestinal brush border membranes contain regulatory subunits of adenylyl cyclase. Proc Natl Acad Sci USA 84: 6965–6969

    Article  PubMed  CAS  Google Scholar 

  12. Donowitz M, Binder HI (1975) Jejunal fluid and electrolyte secretion in carcinoid syndrome. Am J Dig Dis 20: 1115–1522

    Article  PubMed  CAS  Google Scholar 

  13. Donowitz M, Welsh MJ (1987) Regulation of mammalian small intestinal electrolyte secretion. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven, New York, pp 1351–1388

    Google Scholar 

  14. DuPont HL, Ericsson CD, Mathewson JJ, Marani S, Knellwolf-Cousin AL, Martinez-Sandoval FG (1993) Zaldaride maleate, an intestinal calmodulin inhibitor, in the therapy of traveler’s diarrhea. Gastroenterology 104: 709–715

    PubMed  CAS  Google Scholar 

  15. Evans DJ, Chen LC, Curlin GT, Evans DG (1972) Stimulation of adenyl cyclase by Eschericchia coli enterotoxin. Nature (London) 236: 137–138

    Article  CAS  Google Scholar 

  16. Field ML, Graf L, Laird W, Smith P (1978) Heat stable enterotoxin of Escherichia coli: in vitro effects on guanylate cyclase activity, cyclic GMP concentration and ion transport in small intestine. Proc Natl Acad Sci USA 75: 2800–2804

    Article  PubMed  CAS  Google Scholar 

  17. Field M, Rao MC, Chang EB (1989) Intestinal electrolyte transport and diarrheal disease. N Engl J Med 321: 879–883

    Article  PubMed  CAS  Google Scholar 

  18. Freissmuth M, Casey PJ, Gilman AG (1989) G proteins control diverse pathways of transmembrane signaling. FASEB J 3: 2125–2131

    PubMed  CAS  Google Scholar 

  19. Gaginella TS, Rimele TJ, Wietecha M (1983) Studies on rat intestinal epithelial cell receptofs for serotonin and opiates. J Physiol 335: 101–111

    PubMed  CAS  Google Scholar 

  20. Gill DM, Clements JD, Robertson DC, Finkelstein RA (1981) Subunit number and arrangement in Escherichia coli heat-labile enterotoxin. Infect Immun 33: 677–682

    PubMed  CAS  Google Scholar 

  21. Gill DM, Richardson SH (1980) Adenosine diphosphate-ribosylation of adenylate cyclase catalized by heat-labile enterotoxin of Escherichia coli: comparison with cholera toxin. J Infect Dis 141: 64–70

    Article  PubMed  CAS  Google Scholar 

  22. Gilman AG (1984) G proteins and dual control of adenylate cyclase. Cell 36: 577–579

    Article  PubMed  CAS  Google Scholar 

  23. Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56: 615–649

    Article  PubMed  CAS  Google Scholar 

  24. Hepler JR, Gilman AG (1991) G proteins. Trends Biochem Sci 17: 383–387

    Article  Google Scholar 

  25. Holmgren J (1973) Comparison of the tissue receptors for Vibrio cholerae and Escherichia coli enterotoxins by means of gangliosides and natural cholera toxoid. Infect Immun 8: 851–859

    PubMed  CAS  Google Scholar 

  26. Holmgren J (1981) Actions of cholera toxin and the prevention and treatment of cholera. Nature (London) 292: 413–417

    Article  CAS  Google Scholar 

  27. Johnson JA, Morris JG, Kaper JB (1993) Gene encoding zonula occludens toxin (zot) does not occur independently from cholera enterotoxin genes (ctx) in Vibrio cholerae. J Clin Microbiol 31: 732–733

    PubMed  CAS  Google Scholar 

  28. Johnson WM, Lior H (1986) Cytotoxic and cytotonic factors produced by Campylobacter jejuni, Campylobacter coli, and Campylobacter laridis. J Clin Microbiol 24: 275–281

    Google Scholar 

  29. Kahn RA, Gilman AG (1984) Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J Biol Chem 259: 6228–6234

    PubMed  CAS  Google Scholar 

  30. Klipstein FA, Engert RF (1985) Immunological relationship of the B subunits of Campylobacter jejuni and Escherichia coli heat-labile enterotoxins. Infect Immun 48: 629–633

    PubMed  CAS  Google Scholar 

  31. Klipstein FA, Engert RF, Short H, Schenk EA (1985) Pathogenic properties of Campylobacter jejuni: assay and correlation with clinical manifestations. Infect Immun 50: 43–49

    PubMed  CAS  Google Scholar 

  32. Laburthe M, Amiranoff B (1989) Peptide receptors in intestinal epithelium. In: Handbook of physiology — the gastrointestinal system. Am Phys Soc Bethesda, pp 215–243

    Google Scholar 

  33. Levine MM (1991) Vaccines against enteric infections. Current topics in gastroenterology. Elsevier, New York, pp 455–483

    Google Scholar 

  34. Lloyd ML, Olsen WA (1991) Specific mucosal protein deficiency states. In: Yamada T (ed) Textbook of gastroenterology. Lippincott, Philadelphia, pp 1520–1530

    Google Scholar 

  35. Madara JL (1987) Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am J Physiol 253: C171–175

    PubMed  CAS  Google Scholar 

  36. Okabe K, Yatani A, Evans T, Ho YK, Codina J, Birnbaumer L, Brown AM (1990) ßy dimers of G proteins inhibit atrial muscarinic K+ channels. J Biol Chem 265: 12854–12858

    PubMed  CAS  Google Scholar 

  37. Peterson JW, Molina NC, Houston CW, Fader RC (1983) Elevated cAMP in intestinal epithelial cells during experimental cholera and salmonellosis. Toxicon 21: 761–775

    Article  PubMed  CAS  Google Scholar 

  38. Powell DW (1991) Approach to the patient with diarrhea. In: Yamada T (ed) Textbook of gastroenterology. Lippincott, Philadelphia, pp 732–778

    Google Scholar 

  39. Rabbani GH, Greenough WB, Holmgren J, Kirkwood B (1982) Controlled trial of chlorpromazine as antisecretory agent in patients with cholera hydrated intravenously. Br Med J 284: 1361–1364

    Article  CAS  Google Scholar 

  40. Rood RP, Donowitz M (1990) Regulation of small intestinal Na+ absorption by protein kinases: implications for therapy of diarrhoeal diseases. Gastroenterol Int 3: 150–154

    Google Scholar 

  41. Ruiz-Palacios GM, Torres NI, Escamilla E, Ruiz-Palacios BR, Tamayo J (1983) Cholera-like enterotoxin produced by Campylobacter jejuni. Characterisation and clinical significance. Lancet ii: 250–253

    Google Scholar 

  42. Sack RB (1975) Human diarrheal disease caused by enterotoxigenic Escherichia coli. Ann Rev Microbiol 29: 333–353

    Article  CAS  Google Scholar 

  43. Schulzke JD, Riecken EO (1989) Grundlagen epithelialer Transportmechanismen: Bedeutung für pathophysiologisches Verständnis, Differentialdiagnose and Therapie der Durchfallkrankheiten. Z Gastroenterol 27: 693–700

    Google Scholar 

  44. Spiegel AM (1987) Signal transduction by guanine nucleotide binding proteins. Molec Cell Endocrinol 49: 1–16

    Article  PubMed  CAS  Google Scholar 

  45. Spiegel AM, Backlund Jr PS, Butrynski JE, Jones TLZ, Simonds WF (1991) The G protein connection: molecular basis of membrane association. Trends Biochem Sci 16: 338–341

    Article  PubMed  CAS  Google Scholar 

  46. Zeuzem S, Feick P, Zimmermann P, Haase W, Kahn RA, Schulz I (1992) Intravesicular acidification correlates with binding of the ADP-ribosylation factor to microsomal membranes. Proc Natl Acad Sci USA 1992; 89: 6619–6623

    Article  Google Scholar 

  47. Zeuzem S, Schulz I, Caspary WF (1992) GTP-bindende Proteine in der Pathophysiologie innerer Erkrankungen. Dtsch Ärztebl 89 C: 1551–1555

    Google Scholar 

  48. Zeuzem S, Stein J, Piiper A, Caspary WF (1993) G-Proteine in der Signaltransduktion rezeptorvermittelter Transportprozesse im Intestinum. Z Gastroenterol 31 (Suppl 4): 6–11

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeuzem, S., Stein, J., Caspary, W.F. (1994). Gestörte Sekretions- und Resorptionsmechanismen bei Diarrhö. In: Caspary, W.F., Kist, M., Zeitz, M. (eds) Ökosystem Darm VI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85187-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85187-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58548-0

  • Online ISBN: 978-3-642-85187-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics