Skip to main content

Die Zellen des Nervensystems und ihre Verknüpfungen

  • Chapter
Pathologie
  • 92 Accesses

Zusammenfassung

Nerven- und Kreislaufsystem sind die Träger der Signale, die die Funktionen der verschiedenen Organe aufeinander abstimmen und den Organismus befähigen, auf innere und äußere Reize adäquat zu antworten. Dabei sind diese Signalübermittlungen von ganz unterschiedlicher Qualität und dienen ganz verschiedenen Zwecken.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Peters A, Palay SL, Webster HF (1991) The fine structure of the nervous system. Neurons and their supporting cells. Oxford Univ Press, New York Oxford

    Google Scholar 

  2. Barres BA (1991) New roles for glia. J Neurosci 11: 3685–3694

    PubMed  CAS  Google Scholar 

  3. Blinzinger K, Kreutzberg G (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch 85: 145–157

    Article  PubMed  CAS  Google Scholar 

  4. Braak H (1979) The pigment architecture of the human frontal lobe. Anat Embryol (Berl) 157: 35–68

    Article  CAS  Google Scholar 

  5. Bunge RP (1968) Glial cells and the central myelin sheath. Physiol Rev 48: 197–251

    PubMed  CAS  Google Scholar 

  6. Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res 9: 268–287

    Article  PubMed  CAS  Google Scholar 

  7. Compston A, Scolding N, Wren D, Noble M (1991) The pathogenesis of demyelinating disease: insights from cell biology. TINS 14: 175–182

    PubMed  CAS  Google Scholar 

  8. Cragg B (1979) Overcoming the failure of elektronmicroscopy to preserve the brain’s extracellular space. TINS 2: 159–161

    Google Scholar 

  9. Dahl D, Bignami A (1973) Immunchemical and immunofluorescence studies of the glial fibrillary acidic protein in vertebrates. Brain Res 61: 279–293

    Article  PubMed  CAS  Google Scholar 

  10. Dermietzel R, Krause D (1991) Molecular anatomy of the blood-brain barrier as defined by immunocytochemistry. Int Rev Cytol 127: 57–109

    Article  PubMed  CAS  Google Scholar 

  11. Doucette R (1990) Glial influences on axonal growth in the primary olfactory system. Glia 3: 433–449

    Article  PubMed  CAS  Google Scholar 

  12. Eccles JC (1990) Developing concepts of the synapses. J Neurosci 10: 3769–3781

    PubMed  CAS  Google Scholar 

  13. Graeber MB, Streit WJ (1990) Microglia: Immune networks in the CNS. Brain Pat hol 1: 2–5

    Article  CAS  Google Scholar 

  14. Gray EG (1959) Axo-somatic and axodendritic synapses of the cerehral cortex: an electron microscope study. J Anal 93: 420–433

    CAS  Google Scholar 

  15. Harreveld A van (1966) Brain tissue electrolytes. Butterworth, London

    Google Scholar 

  16. Hatten ME (1990) Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain. TINS 13: 179–184

    PubMed  CAS  Google Scholar 

  17. Hertz L (1979) Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acid transmitters. Progr Neurohiol 13: 277–323

    Article  CAS  Google Scholar 

  18. Hudson LD (1990) Molecular hiology of myelin proteins in the central and peripheral nervous systems. Semin Neurosci 2: 483–496

    Google Scholar 

  19. Jessen KR, Mirsky R (1991) Schwann cell precursors and their development. Glia 4: 185–194

    Article  PubMed  CAS  Google Scholar 

  20. Kurz-Isler G, Wolburg H (1988) Light-dependent dynamics of gap junctions between horizontal cells in the retina of the crucian carp. Cell Tissue Res 251: 641–649

    Article  PubMed  CAS  Google Scholar 

  21. Landis DMD, Reese TS (1981) Membrane structure in mammalian astrocytes: A review of freeze-fracture studies on adult, developing, reactive and cultured astrocytes. J Exp Biol 95: 35–48

    PubMed  CAS  Google Scholar 

  22. Lasater EM (1987) Retinal horizontal cell gap junctional conductance is modulated by dopamine through a cyclic AMP-dependent protein kinase. Proc Natl Acad Sci USA 84: 7319–7223

    Article  PubMed  CAS  Google Scholar 

  23. Lindsay RM (1986) Reactive gliosis. In Fedoroff S, Vernadakis A. (eds) Astrocytes. Cell biology and pathology of astrocytes, vol. 3. Academic Press, London New York, pp 231–262

    Google Scholar 

  24. Marciano FF, Gocht A, Dentinger MP, Hof L, Csiza CK, Barron KD (1990) Axonal regrowth in the amyelinated optic nerve of the myelin-deficient rat: ultrastructural observations and effects of ganglioside administration. J Comp Neurol 295: 219–234

    Article  PubMed  CAS  Google Scholar 

  25. Miller RH, ffrench-Constant C, Raff MC (1989) The macroglial cells of the rat optic nerve. Ann Rev N eurosci 12: 517–534

    CAS  Google Scholar 

  26. Murphy S, Pearce B (1987) Functional receptors for neurotransmitters on astroglial cells. Neuroscience 22: 381–394

    Article  PubMed  CAS  Google Scholar 

  27. Norenberg MD (1986) Hepatic encephalopathy: A disorder of astrocytes. In: Fedoroff S, Vernadakis A. (eds) Astrocytes. Cell biology and pathology of astrocytes. vol. 3. Academic Press, London New York. pp 425–460

    Google Scholar 

  28. Oehmichen M (1978) Mononuclear phagocytes in the central nervous system. Springer, Berlin Heidelberg New York

    Google Scholar 

  29. Odette LL, Newman EA (1988) Model of potassium dynamics in the central nervous system. Glia 1: 198–210

    Article  PubMed  CAS  Google Scholar 

  30. Pitts JD, Fnbow ME (1986) The gap junction. J Cell Sci [Suppl] 4: 239–266

    CAS  Google Scholar 

  31. Pixley SKR, Vellis J de (1984) Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Dev Brain Res 15: 201–209

    Article  Google Scholar 

  32. Reichenbach A (1989) Attempt to classify glial cells by means of their process specialization using the rabbit retinal Muller cell as an example of cytotopograpbic specialization of glial cells. Glia 2: 250–259

    Article  PubMed  CAS  Google Scholar 

  33. Risau W, Wolburg H (1990) Development of the blood-brain barrier. TINS 13: 174–178

    PubMed  CAS  Google Scholar 

  34. Roitbak AJ (1983) Neuroglia. Eigenschaften, Funktionen, Bedeutung. Fischer. Jena

    Google Scholar 

  35. Schlote W, Boellaard JW (1983) Role of lipopigment during aging of nerve and glial cells in the human central nervous system. In: Cervos-Navarro J, Sarkander H-I. (eds) Brain aging: Neuropathology and neuropharmacology, Aging, vol.21. Raven Press. New York. pp 27–74

    Google Scholar 

  36. Schlue W-R, Deitmer JW (1988) Ionic mechanisms of intracellular pH regulation in the nervous system. Ciba Foundation Symposium. vol. 139. Wiley. Chichester, pp 47–69

    Google Scholar 

  37. Schwab ME (1990) Myelin-associated inhibitors of neurite growth and regeneration in the CNS. TINS 13: 452–456

    PubMed  CAS  Google Scholar 

  38. Sheetz MP, Steuer ER, Schroer TA (1989) The mechanism and regulation of fast axonal transport. TINS 12: 474–478

    PubMed  CAS  Google Scholar 

  39. Siekevitz P (1985) The postsynaptic density: a possihle role in the long-lasting effects in the central nervous system. Proc Natl Acad Sci USA 82: 3494–3498

    Article  PubMed  CAS  Google Scholar 

  40. Skoff RP (1990) Gliogenesis inrat optic nerve: astrocytes are generated in a single wave before oligodendrocytes. Dev Biol 139: 149–168

    Article  PubMed  CAS  Google Scholar 

  41. Streit W J, Kreutzberg G (1987) Lectin binding by resting and reactive microglia. J Neurocytol 16: 249–260

    Article  PubMed  CAS  Google Scholar 

  42. Thanos S (1991) The relationship of microglial cells to dying neurons during natural neuronal cell death and axotomy-induced degeneration of the rat retina. Eur J Neurosci 3: 1189–1207

    Article  PubMed  Google Scholar 

  43. Vcrnadakis A (1988) Neuron-glia interrelations. Int Rev NeuroBiol 30: 149–223

    Article  Google Scholar 

  44. Weiss DG (ed) (1982) Axoplasmic transport. Springer. Berlin Heidelherg New York

    Google Scholar 

  45. Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minikowski A. (ed) Regional development of the brain in early life. Blackwell, Oxford Edinhurg, pp 3–70

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolburg, H. (1995). Die Zellen des Nervensystems und ihre Verknüpfungen. In: Remmele, W., Peiffer, J., Schröder, J.M. (eds) Pathologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85179-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85179-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85180-3

  • Online ISBN: 978-3-642-85179-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics