Skip to main content

Growth of Clostridia and Preparation of Their Neurotoxins

  • Chapter
Book cover Clostridial Neurotoxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 195))

Abstract

Various strains of Clostridium botulinum and C. tetani elaborate a family of eight structurally similar protein neurotoxins. The seven botulinum neurotoxins (types A-G) are distinguished on the basis of their reactions with specific antibodies and are the causative agents of the disease botulism. These toxins act on the peripheral nervous system where they block neuromuscular transmission and induce widespread flaccid paralysis (Shone 1986; Niemann 1991). Tetanus toxin, on the other hand, acts primarily on the central nervous system to disrupt the control mechanisms of polysynapses resulting in the characteristic muscular spasms and convultions of tetanospasm. Although symptomatically very different, the mechanisms of action of botulinum and tetanus toxins are very similar; both are presynaptically acting neurotoxins which inhibit the calcium-mediated secretion of various neurotransmitter substances (Bigalke et al. 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aureli P, Fenicia L, Pasolini B, Gianfranceschi M, McCroskey LM, Hatheway CL (1986) Two cases of type E infant botulism caused by neurotoxigenic Clostridium butyricum in Italy. J Infect Dis 154: 207–211

    CAS  Google Scholar 

  • Blasi J, Chapman ER, Link E, Binz T, Yamasaki S, De Camilli P, Sudhof TC, Niemann H, Jahn R (1993) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365: 160–163

    Article  PubMed  CAS  Google Scholar 

  • Bigalke H, Heller I, Bizzini B, Habermann E (1981) Tetanus toxin and botulinum toxin inhibit the release and uptake of various transmitter, as studied with particulate fractions from rat brain and spinal chord. Naunyn Schmiedebergs Arch Pharmacol 316: 244–251

    Article  PubMed  CAS  Google Scholar 

  • Bonventre PF, Kempe LL (1960) Physiology of toxin production by Clostridium botulinum types A and B.I. Growth, autolysis and toxin production. J Bacteriol 79: 18–23

    PubMed  CAS  Google Scholar 

  • Boroff DA, DasGupta BR (1971) Botulinum toxin. In: microbial toxins. Kadis S, Montie TC, Ajl SJ (eds) vol IIA p1–68 Academic, New York

    Google Scholar 

  • Cato EP, Hash DE, Holdeman LV, Moore WEC (1982) Electrophoretic study of Clostridium species. J Clin Microbiol 15: 688–702

    PubMed  CAS  Google Scholar 

  • Cato EP, George WL, Finegold SM (1986) Genus Clostridium. In: Bergey’s manual of systematic bacteriology vol. 2 Sneath PHA, Nair NS, Sharpe ME, Holt JG (eds) Williams and Wilkins, Baltimore, pp 1141–1200

    Google Scholar 

  • DasGupta BR (1983) Microbial food toxicants: Clostridium botulinum toxins. CRC handbook of foodbome diseases of biological origin. Rechcigl M (ed) CRC Boca Raton, pp 25–56

    Google Scholar 

  • DasGupta BR, Boroff DA (1967) Chromatographic isolation of haemagglutinin-free neurotoxin from crystalline toxin of Clostridium botulinum type A toxin. Biochem Biophys Acta 147: 603–609

    PubMed  CAS  Google Scholar 

  • DasGupta BR, Sathyamoorthy V (1984) Purification and amino acid composition of type A botulinum neurotoxin. Toxicon 3: 415–424

    Article  Google Scholar 

  • Eklund MW, Poysky FT, Meyers JA, Pelroy GA (1974) Interspecies conversion of Clostridium botulinum type C to Clostridium novyi type A by bacteriophage. Science 186: 456–458

    Article  PubMed  CAS  Google Scholar 

  • Evans DM, Williams RS, Shone CC, Hambleton P, Melling J, Dolly JO (1986) Botulinum type B neurotoxin. Its purification, iodination and binding to rat brain synaptosomes. Eur J Biochem 154: 409–416

    Article  PubMed  CAS  Google Scholar 

  • Gerwing J, Dolman CE, Kason DV, Tremaine JH (1966) Purification and characterisation of C. botulinum type B toxin. J Bacteriol 91: 484–487

    PubMed  CAS  Google Scholar 

  • Gullmar B, Molin N (1967) Effect of nutrients on physiological properties of Clostridium botulinum type E. J Bacteriol 94: 1924–1929

    CAS  Google Scholar 

  • Hall JD, McCroskey LM, Pincomb BJ, Hatheway CL (1985) Isolation of an organism resembling Clostridium baratii which produces type F botulinal toxin from an infant with botulism. J Clin Microbiol 21: 654–655

    PubMed  CAS  Google Scholar 

  • Hambleton P, Griffiths JB, Cameron R, Melling J (1991) A high containment polymodal pilot-plant fermenter- design concepts. J Chem Tech Biotechnol 50: 167–180

    CAS  Google Scholar 

  • Hatheway CL (1976) Toxoid of C. botulinum type F: purification and immunogenicity studies. Appl Environ Microbiol 31: 234–242

    PubMed  CAS  Google Scholar 

  • Hatheway CL (1988) Botulism. In: Barlows A, Hansler WJ Jr, Ohashi M, Turano A (eds) Laboratory diagnosis of infectious diseases: principles and practice vol 1, bacterial, mycotic and parasitic diseases. Springer, Berlin Heidelberg New York, pp 111–133

    Google Scholar 

  • Helting TB, Parschat S, Engelhardt H (1979) Structure of tetanus toxin. J Biol Chem 254: 10728–10733

    PubMed  CAS  Google Scholar 

  • Hepple JR (1965) Large-scale cultivation of Clostridia. J Appl Bacteriol 28: 52–55

    Google Scholar 

  • Inoue K, Iida H (1970) Conversion to toxigenicity in C. botulinum type C. Jpn J Microbiol 14: 87–89

    PubMed  CAS  Google Scholar 

  • Iwasaki M, Sakaguchi G (1978) Acid precipitation of C. botulinum type C and D toxins from whole culture by addition of RNA as a precipitation aid. Infect Immun 19: 749–751

    PubMed  CAS  Google Scholar 

  • Kitamura M, Sakaguchi S, Sakaguchi G (1969) Significance of the 12S toxin of C. botulinum type E. J Bacteriol 98 1173–1178

    CAS  Google Scholar 

  • Kozaki S, Togashi S, Sakaguchi G (1981) Separation of Clostridium botulinum type A derivative toxin into two fragments. Jpn J Med Sci Biol 34: 61–68

    PubMed  CAS  Google Scholar 

  • Kuarzono H, Shimozowa K, Hosokawa M, Sakaguchi G (1985) Procedure for the large-scale production and purification of C. botulinum C1 toxin for the preparation of toxoid. FEM Microbiol Lett 30: 47–51

    Article  Google Scholar 

  • Laird WJ, Aaronson W, Silver RP, Habig WH, Hardegree MC (1980) Plasmid-associated toxigenicity in Clostridium tetani. J Infect Dis 142: 623

    Article  PubMed  CAS  Google Scholar 

  • Lamanna C, Eklund HW, McElroy OE (1946) Botulinum toxin (type A); including a study of shaking with chloroform as a step in the isolation procedure. J Bacteriol 52: 1–13

    CAS  Google Scholar 

  • Latham WC, Bent DF, Levine L (1962) Tetanus toxin production in the absence of protein. Appl Microbiol 10: 146–152

    PubMed  CAS  Google Scholar 

  • Lynt RK, Solomon HM, Kautter DA (1984) Heat resistance of Clostridium botulinum type G in phosphate buffer. J Food Prot 47: 463–466

    Google Scholar 

  • McCroskey LM, Hatheway CL, Fenicia L, Pasolini B, Aureli P (1986) Characterisation of an organism that produces type E botulinal toxin but which resembles Clostridium butyricum from the faeces of an infant with type E botulism. J Clin Microbiol 23: 201–202

    PubMed  CAS  Google Scholar 

  • Moberg LJ, Sugiyama H (1978) Affinity chromatography purification of type A botulinum neurotoxin from crystalline toxic complex. Appl Environ Microbiol 35: 828–831

    Google Scholar 

  • Mueller JH, Miller PA (1945) Production of tetanal toxin. J Immunol 50: 377–384

    Google Scholar 

  • Murayama S, Syuto B, Oguma K, Iida H, Kubo S (1984) Comparison of C. botulinum toxins type D and C1 in molecular property, antigenicity and binding to rat-brain synaptosomes. Eur J Biochem 142: 487–492

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KE (1966) Growth and toxin production by Clostridium tetani on repeated transfer in culture media. Acta Pathol. Microbiol Scand 77: 542–554

    Article  Google Scholar 

  • Neimann H (1991) Molecular biology of Clostridial neurotoxins. In: Alouf JE, Freer JH (eds) A sourcebook of bacterial protein Toxins. Academic, New York, pp. 303–348

    Google Scholar 

  • Notermans S, Hagenaars AM, Kozaki S (1982) The enzyme-linked immunosorbant assay for the detection and determination of C. botulinum toxins A, B and E. Meth Enzymol 84: 223–228

    Article  PubMed  CAS  Google Scholar 

  • Nukina M, Mochida Y, Sakaguchi S, Sakaguchi G (1988) Purification of botulinum type G progenitor toxin. Zentralbl Bakterial Hyg A 268: 270–272

    Google Scholar 

  • Prescott LM, Altenbern RA (1967) Detection of bacteriophages from two strains of Clostridium tetani. J Virol 1: 1085–1086

    PubMed  CAS  Google Scholar 

  • Schiavo G, Montecucco C (1994) Tetanus and botulinum neurotoxins: isolation and assay. Methods Enzymol (in press)

    Google Scholar 

  • Schiavo G, Benefenati F, Poulani B, Rosetto O, Polverino de Laureto P, DasGupta BR, Montecucco C (1992) Tetanus and botulinum-B neurotoxins block transmitter release by proteolytic clevage of synaptobrevin. Nature 359: 832–835

    Article  PubMed  CAS  Google Scholar 

  • Schiavo G, Shone CC, Rossetto O, Alexander FCG, Montecucco C (1993a) Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J Biol Chem 268: 11516–11519

    PubMed  CAS  Google Scholar 

  • Schiavo G, Santucci A, DasGupta BR, Mehta PP, Jontes J, Benefeati F, Wilson MC, Montecucco C (1993b) Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett 335: 99–103

    Article  PubMed  CAS  Google Scholar 

  • Schmidt JJ, Segal LS (1986) Purification of type E botulinum neurotoxin by high performance ion exchange chromatography. Anal Biochem 156: 213–219

    Article  PubMed  CAS  Google Scholar 

  • Shone C, Quinn CP, Wait R, Hallis B, Fooks SG, Hambleton P (1993) Proteolytic cleavage of synthetic fragments of vesicle-associated membrane protein isoform-2 by botulinum type B neurotoxin. Eur J Biochem 217: 965–971

    Article  PubMed  CAS  Google Scholar 

  • Shone CC (1986) Clostridium botulinum neurotoxins, their structures and modes of action. In: Watson D (ed) Natural toxicants in foods. Horwood Chichester, pp 11–57

    Google Scholar 

  • Shone CC, Wilton-Smith P, Appleton N, Hambleton P, Modi N, Gatley S, Melling J (1985) Monoclonal antibody-based immunoassay for C. botulinum type A toxin is comparable to the mouse bioassay. Appl Environ Microbiol 50: 63–67

    PubMed  CAS  Google Scholar 

  • Shone CC, Tranter HS, Alexander FCG (1992) Purification and radiolabelling of Clostridium botulinum type F neurotoxin. Methods Neurosci 8: 165–179

    CAS  Google Scholar 

  • Siegal LS (1981) Fermentation kinetics of botulinum toxin production (types A, B and E). In: Lewis GE (ed) Biomedical aspects of botulism. Academic, New York, pp 121–128

    Google Scholar 

  • Söllner T, Whitehead SW, Brunner M, Erdjument-Bromage H, Geromanus S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle fusion and targeting. Nature 362: 318–324

    Article  PubMed  Google Scholar 

  • Sugii S, Sakaguchi G (1977) Botulogenic properties of vegetables with special reference to the molecular size of the toxin in them. J Food Safety 1: 53–65

    Article  Google Scholar 

  • Summanen P (1993) Recent taxonomic changes for anaerobic gram-positive and selected gramnegative organisms. Clin Infect Dis 16 [Suppl 4]: S168–174

    Article  PubMed  Google Scholar 

  • Syuto B, Kubo S (1981) Separation and characterisation of heavy and light chains from Clostridium botulinum type C and their reconstitution. J Biol Chem 256: 3712–3717

    PubMed  CAS  Google Scholar 

  • Takumi K, Kawata T, Hisatsune K (1971) Autolytic enzyme system of C. botulinum, vol II mode of action of autolytic enzymes in C. botulinum type A. Jpn J Microbiol 15: 131–141

    PubMed  CAS  Google Scholar 

  • Tse T-K, Dolly JO, Hambleton P, Wray D, Melling J (1981) Preparation and characterisation of homogenious preparation of toxin type A from Clostridium botulinum. Eur J Biochem 122: 493–500

    Article  Google Scholar 

  • Tsunashima I, Sato K, Shoji K, Yoneda M, Amono T (1964) Excess supplementation of certain amino acids to medium and its inhibitory effect on toxin production by Clostridium tetani Biken J 7: 161–163

    PubMed  CAS  Google Scholar 

  • Wadsworth JDF, Desai M, King HJ, Tranter HS, Hambleton P, Melling J, Dolly JO, Shone CC (1990) Botulinum type F neurotoxin, its purification and binding to rat brain synaptosomes. Biochem J 268: 123–128

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shone, C.C., Tranter, H.S. (1995). Growth of Clostridia and Preparation of Their Neurotoxins. In: Montecucco, C. (eds) Clostridial Neurotoxins. Current Topics in Microbiology and Immunology, vol 195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85173-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85173-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85175-9

  • Online ISBN: 978-3-642-85173-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics