Neurospecific Binding, Internalization, and Retrograde Axonal Transport

  • J. L. Halpern
  • E. A. Neale
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 195)


A number of pharmacologic agents which act on intracellular targets typically bind to specific cell surface receptors and are internalized in order to exert their effects on a cytosolic substrate (Neville and Chang 1978). Although many of the details remain to be determined, generally it is accepted that the clostridial neurotoxins (CNTs) interact with membrane receptors and are translocated into the cytosol where they act to block release of neurotransmitters (Habermann et al. 1980; Schmitt et al. 1981; Simpson 1980, 1981). The active toxins consist of a light (L) chain and a heavy (H) chain that are linked by one disulfide bond. The neurotoxins comprise three functional domains, each of which is required for one of the steps in the intoxication process (Fig. 1). The carboxyl terminal half of the H chain (HC) carries the receptor binding domain, the amino terminal half of the H chain (HN)
constitutes the transmembrane domain, and the L chain is the catalytic domain (reviewed by Niemann 1991; Wellhöner 1992). This chapter summarizes current data on the binding of CNTs to sensitive cells and the mechanism whereby the toxins are thought to gain access to their cytoplasmic targets.


Botulinum Toxin Diphtheria Toxin Botulinum Neurotoxin Tetanus Toxin Spinal Cord Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler M, Deshpande SS, Sheridan RE, Lebeda FJ (1994) Evaluation of captropril and other potential therapeutic compounds in antagonizing botulinum toxin-induced muscle paralysis. In: Jankovic J, Hallett M (eds) Therapy with botulinum toxin. Dekker, New York, pp 63–70Google Scholar
  2. Albus U, Habermann E (1983) Tetanus toxin inhibits the evoked outflow of an inhibitory (GABA) and an excitatory (D-aspartate) amino acid from particulate brain cortex. Toxicon 21: 97–110PubMedCrossRefGoogle Scholar
  3. Ashton AC, Dolly JO(1988) Characterization of the inhibitory action of botulinum neurotoxin type A on the release of several transmitters from rat cerebrocortical synaptosomes. J Neurochem 50: 1808–1816PubMedCrossRefGoogle Scholar
  4. Beaumelle B, Bensammar L, Bienvenue A (1992) Selective translocation of the A chain of diphtheria toxin across the membrane of purified endosomes. J Biol Chem 267: 11525–11531PubMedGoogle Scholar
  5. Beise J, Hahnen J, Andersen-Beckh B, Dreyer F (1994) Pore formation by tetanus toxin, its chain and fragments in neuronal membranes and evaluation of the underlying motifs in the structure of the toxin molecule. Naunyn Schmiedebergs Arch Pharmacol 349: 66–73PubMedCrossRefGoogle Scholar
  6. Bergey GK, Macdonald RL, Habig WH, Hardegree MC, Nelson PG (1983) Tetanus toxin: convulsant action on mouse spinal cord neurons in culture: J Neurosci 3: 2310–2323PubMedGoogle Scholar
  7. Bergey GK, Bigalke H, Nelson PG (1987) Differential effects of tetanus toxin on inhibitory and excitatory synaptic transmission in mammalian spinal cord neurons in culture: a presynaptic locus of action for tetanus toxin. J Neurophysiol 57: 121–131PubMedGoogle Scholar
  8. Bigalke H, Dimpfel W, Habermann E (1978) Suppression of 3H-acetylcholine release from primary nerve cell cultures by tetanus and botulinum-A toxin. Naunyn Schmiedebergs Arch Pharmacol 303: 133–138PubMedCrossRefGoogle Scholar
  9. Bigalke H, Heller I, Bizzini B, Habermann E (1981) Tetanus toxin and botulinum A toxin inhibit release and uptake of various transmitters, as studied with particulate preparations from rat brain and spinal cord. Naunyn Schmiedebergs Arch Pharmacol 316: 244–251PubMedCrossRefGoogle Scholar
  10. Bigalke H, Dreyer F, Bergey G (1985) Botulinum A neurotoxin inhibits non-cholinergic synaptic transmission in mouse spinal cord neurons in culture. Brain Res 360: 318–324PubMedCrossRefGoogle Scholar
  11. Bizzini B, Stoeckel K, Schwab M (1977) An antigenic polypeptide fragment from tetanus toxin: chemical characterization, binding to gangliosides and retrograde axonal transport in various neuron systems. J Neurochem 28: 529–542PubMedCrossRefGoogle Scholar
  12. Bizzini B, Grob P, Glicksman MA, Akert K (1980) Use of the B-IIb tetanus toxin derived fragment as a specific neuropharmacological transport agent. Brain Res 193: 221–227PubMedCrossRefGoogle Scholar
  13. Black JD, Dolly JO (1986a) Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves. J Cell Biol 103: 521–534PubMedCrossRefGoogle Scholar
  14. Black JD, Dolly JO (1986b) Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J Cell Biol 103: 535–544PubMedCrossRefGoogle Scholar
  15. Blasi E, Pitzurra L, Burhan-Fuad AM, Marconi P, Bistoni F (1990) Gamma interferon-induced specific binding of tetanus toxin on the GG2EE macrophage cell line. Scand J Immunol 32: 289–292PubMedCrossRefGoogle Scholar
  16. Blasi J, Egea G, Castiella MJ, Arribas M, Solsona C, Richardson PJ, Marsal J (1992) Binding of botulinum neurotoxin to pure cholinergic nerve terminals isolated from the electric organ of Torpedo. J Neural Transm Gen Sect 90: 87–102PubMedCrossRefGoogle Scholar
  17. Blaustein RO, Germann WJ, Finkelstein A, DasGupta BR (1987) The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers. FEBS Lett 226: 115–120PubMedCrossRefGoogle Scholar
  18. Bleck T (1989) Clinical aspects of tetanus. In: Simpson LL (ed) Botulinum neurotoxin and tetanus toxin. Academic, San Diego, pp 379–398Google Scholar
  19. Boquet P, Duflot E (1982) Tetanus toxin fragment forms channels in lipid vesicles at low pH. Proc Natl Acad Sci USA 79: 7614–7618PubMedCrossRefGoogle Scholar
  20. Boquet P, Duflot E, Hauttecoeur B (1984) Low pH induces a hydrophobic domain in the tetanus toxin molecule. Eur J Biochem 144: 339–344PubMedCrossRefGoogle Scholar
  21. Borochov-Neori H, Yavin E, Montai M (1984) Tetanus toxin forms channels in planar lipid bilayers containing gangliosides. Biophys J 45: 83–85PubMedCrossRefGoogle Scholar
  22. Cabot JB, Mennone A, Bogan N, Carroll J, Evinger C, Erichsen JT(1991) Retrograde, transsynaptic and transneuronal transport of fragment C of tetanus toxin by sympathetic preganglionic neurons. Neuroscience 40: 805–823PubMedCrossRefGoogle Scholar
  23. Choe S, Bennett MJ, Fujii G, Curmi PM, Kantardjieff KA, Collier RJ, Eisenberg D (1992) The crystal structure of diphtheria toxin. Nature 357: 216–222PubMedCrossRefGoogle Scholar
  24. Critchley DR, Nelson PG, Habig WH, Fishman PH (1985) Fate of tetanus toxin bound to the surface of primary neurons in culture: evidence for rapid internalization. J Cell Biol 100: 1499–1507PubMedCrossRefGoogle Scholar
  25. Critchley DR, Habig WH, Fishman PH (1986) Reevaluation of the role of gangliosides as receptors for tetanus toxin. J Neurochem 47: 213–222PubMedCrossRefGoogle Scholar
  26. de Paiva A, Poulain B, Lawrence GW, Shone CC, Taue L, Dolly JO (1993) A role for the interchain disulfide or its participating thiols in the internalization of botulinum neurotoxin A revealed by a toxin derivative that binds to ecto-acceptors and inhibits transmitter release intracellular. J Biol Chem 268: 20838–20844PubMedGoogle Scholar
  27. Diamond J, Mellanby J (1971) The effect of tetanus toxin in the goldfish. J Physiol (Lond) 215: 727–741Google Scholar
  28. Dimpfel W, Habermann E (1973) Histoautoradiographic localization of 125I-labelled tetanus toxin in rat spinal cord. Naunyn Schmiedebergs. Arch Pharmacol 280: 177–182CrossRefGoogle Scholar
  29. Dimpfel W, Neale J, Habermann E (1975) 125I-labeled tetanus toxin as a neuronal marker in tissue cultures derived from embryonic CNS. Naunyn Schmiedebergs Arch Pharmacol 290: 329–333PubMedCrossRefGoogle Scholar
  30. Dobrenis K, Joseph A, Rattazzi MC (1992) Neuronal lysosomal enzyme replacement using fragment C of tetanus toxin. Proc Natl Acad Sci USA 89: 2297–2301PubMedCrossRefGoogle Scholar
  31. Donovan JJ, Middlebrook JL (1986) Ion-conducting channels produced by botulinum toxin in planar lipid membranes. Biochemistry 25: 2872–2876PubMedCrossRefGoogle Scholar
  32. Duchen LW, Tonge DA (1973) The effects of tetanus toxin on neuromuscular transmission and on the morphology of motor end-plates in slow and fast skeletal muscle of the mouse. J Physiol (Lond) 228: 157–172Google Scholar
  33. Dumas M, Schwab ME, Baumann R, Thoenen H (1979a) Retrograde transport of tetanus toxin through a chain of two neurons. Brain Res 165: 354–357PubMedCrossRefGoogle Scholar
  34. Dumas M, Schwab ME, Thoenen H (1979b) Retrograde axonal transport of specific macromolecules as a tool for characterizing nerve terminal membranes. J Neurobiol 10: 179–197PubMedCrossRefGoogle Scholar
  35. Eisenbarth GS, Shimizu K, Bowring MA, Wells S (1982) Expression of receptors for tetanus toxin and monoclonal antibody A2B5 by pancreatic islet cells. Proc Natl Acad Sci USA 79: 5066–5070PubMedCrossRefGoogle Scholar
  36. Erdmann G, Wiegand H, Wellhöner HH (1975) Intraaxonal and extraaxonal transport of 125I-tetanus toxin in early local tetanus. Naunyn Schmiedebergs Arch Pharmacol 290: 357–373PubMedCrossRefGoogle Scholar
  37. Erdmann G, Hanauske A, Wellhöner HH (1981) Intraspinal distribution and reaction in the grey matter with tetanus toxin of intracisternally injected anti-tetanus toxoid F(ab’)2 fragments. Brain Res 211: 367–377PubMedCrossRefGoogle Scholar
  38. Evans DM, Williams RS, Shone CC, Hambleton P, Melling J, Dolly JO (1986) Botulinum neurotoxin type B. Eur J Biochem 154: 409–416PubMedCrossRefGoogle Scholar
  39. Evinger C, Erichsen JT (1986) Transsynaptic retrograde transport of fragment C of tetanus toxin demonstrated by immunohistochemical localization. Brain Res 380: 383–388PubMedCrossRefGoogle Scholar
  40. Fishman PS, Carrigan DR (1987) Retrograde transneuronal transfer of the C-fragment of tetanus toxin. Brain Res 406: 275–279PubMedCrossRefGoogle Scholar
  41. Fujiwara T, Oda K, Yokota S, Takatsuki A, Ikehara Y (1988) Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem 263: 18545–18552PubMedGoogle Scholar
  42. Goldberg R, Costa T, Habig W, Kohn L, Hardegree M (1981) Characterization of fragment C and tetanus toxin binding to rat brain membranes. Mol Pharmacol 20: 565–570PubMedGoogle Scholar
  43. Habermann E (1974) 125I-labeled neurotoxin from Clostridium botulinum A: preparation binding to synaptosomes and ascent to the spinal cord. Naunyn Schmiedebergs Arch Pharmacol 281: 47–56PubMedCrossRefGoogle Scholar
  44. Habermann E (1988) Inhibition by tetanus and botulinum A toxin of the release of [3H]noradrenaline and [3H]GABA from rat brain homogenate. Experientia 44: 224–226PubMedCrossRefGoogle Scholar
  45. Habermann E, Albus U (1986) Interaction between tetanus toxin and rabbit kidney: a comparison with rat brain preparations. J Neurochem 46: 1219–1226PubMedCrossRefGoogle Scholar
  46. Habermann E, Dreyer F (1986) Clostridial neurotoxins: handling and action at the cellular and molecular level. In: Compans RW, Cooper M, Koprowski H et al. (eds) Current topics in microbiology and immunology, Vol 129. Springer, Berlin Heidelberg New York, pp 93–179CrossRefGoogle Scholar
  47. Habermann E, Dreyer F, Bigalke H (1980) Tetanus toxins blocks the neuromuscular transmission in vitro like botulinum A toxin. Naunyn Schmiedebergs Arch Pharmacol 311: 33–40PubMedCrossRefGoogle Scholar
  48. Habermann E, Müller H, Hudel M (1988) Tetanus toxin and botulinum A and C neurotoxins inhibit noradrenaline release from cultured mouse brain. J Neurochem 51: 522–527PubMedCrossRefGoogle Scholar
  49. Habig WH, Kenimer JG, Hardegree MC (1983) Retrograde axonal transport of tetanus toxin: toxin mediated antibody transport. In: Liu T-Y, Sakakibara S, Schechter AN, Yagi K, Yajima H, Yasunobu KT (eds) Frontiers in biochemical and biophysical studies of proteins and membranes. Elsevier, New York, pp 463–473Google Scholar
  50. Habig WH, Bigalke H, Bergey GK, Neale EA, Hardegree MC, Nelson PG (1986) Tetanus toxin in dissociated spinal cord cultures: long-term characterization of form and action. J Neurochem 47: 930–937PubMedCrossRefGoogle Scholar
  51. Halpern JL, Loftus A (1993) Characterization of the receptor-binding domain of tetanus toxin. J Biol Chem 268: 11188–11192PubMedGoogle Scholar
  52. Halpern JL, Smith LA, Seamon KB, Groover KA, Habig WH (1989) Sequence homology between tetanus and botulinum toxins detected by an antipeptide antibody. Infect Immun 57: 18–22PubMedGoogle Scholar
  53. Helting TB, Zwisler O (1977) Structure of tetanus toxin. I. Breakdown of the toxin and discrimination between polypeptide fragments. J Biol Chem 252: 187–193PubMedGoogle Scholar
  54. Hoch DH, Romero-Mira M, Ehrlich BE, Finkelstein A, DasGupta BR, Simpson LL (1985) Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc Natl Acad Sci USA 82: 1692–1696PubMedCrossRefGoogle Scholar
  55. Högy B, Dauzenroth M-E, Hudel M, Weller U, Habermann E (1992) Increase of permeability of synaptosomes and liposomes by the heavy chain of tetanus toxin. Toxicon 30: 63–76PubMedCrossRefGoogle Scholar
  56. Holmgren J, Elwing H, Fredman P, Svennerholm L (1980) Polystyrene-absorbed gangliosides for investigation of the structure of the tetanus toxin receptor. Eur J Biochem 106: 371–379PubMedCrossRefGoogle Scholar
  57. Ikonen E, Parton RG, Hunziker W, Simons K, Dotti CG (1994) Transcytosis of the polymeric immunoglobulin receptor in cultured hippocampal neurons. Curr Biol 3: 635–644CrossRefGoogle Scholar
  58. Kitamura M, Iwamori M, Nagai Y (1980) Interaction between Clostridium botulinum neurotoxin and gangliosides. Biochim Biophys Acta 628: 328–335PubMedCrossRefGoogle Scholar
  59. Kozaki S, Kamata Y, Nagai T, Ogasawara J, Sakaguchi G (1986) The use of monoclonal antibodies to analyze the structure of Clostridium botulinum type E derivative toxin. Infect Immun 52: 786–791PubMedGoogle Scholar
  60. Kozaki S, Miki A, Kamata Y, Ogasawara J, Sakaguchi G (1989) Immunological characterization of papain-induced fragments of Clostridium botulinum type A neurotoxin and interaction of the fragments with brain synaptosomes. Infect Immun 57: 2634–2639PubMedGoogle Scholar
  61. Kurokawa Y, Oguma K, Yokosawa N, Syuto B, Fukatsu R, Yamashita I (1987) Binding and cytotoxic effects of Clostridium botulinum type A, C, and E toxins in primary neuron cultures from foetal mouse brains. J Gen Microbiol 133: 2647–2657PubMedGoogle Scholar
  62. Lebeda FJ, Olson MA (1995) Structural predictions of the channel-forming region of botulinum neurotoxin heavy chain. Toxicon (in press)Google Scholar
  63. Lebeda FJ, Hack DC, Gentry MK (1994) Theoretical analyses of the functional regions of the heavy chain of botulinum neurotoxin. In: Jankovic J, Hallett M (eds) Therapy with botulinum toxin. Dekker, New York, pp 51–61Google Scholar
  64. Ledley FD, Lee G, Kohn LD, Habig WH, Hardegree MC (1977) Tetanus toxin interactions with thyroid plasma membranes. J Biol Chem 252: 4049–4055PubMedGoogle Scholar
  65. Leppla S, Dorland RB, Middlebrook JL (1980) Inhibition of diphtheria toxin degradation and cytotoxic action by chloroquine. J Biol Chem 255: 2247–2250PubMedGoogle Scholar
  66. Lippincott-Schwartz J, Yuan LC, Bonifacino JS, Klausner RD (1989) Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56: 801–813PubMedCrossRefGoogle Scholar
  67. Manning KA, Erichsen JT, Evinger C (1990) Retrograde transneuronal transport properties of fragment C of tetanus toxin. Neuroscience 34: 251–263PubMedCrossRefGoogle Scholar
  68. Marnell MH, Stookey M, Draper RK (1982) Monensin blocks the transport of diphtheria toxin to the cell cytoplasm. J Cell Biol 93: 57–62PubMedCrossRefGoogle Scholar
  69. Marxen P, Fuhrmann U, Bigalke H (1989) Gangliosides mediate inhibitory effects of tetanus and botulinum A neurotoxins on exocytosis in chromaffin cells. Toxicon 27: 849–859PubMedCrossRefGoogle Scholar
  70. Mellanby J (1984) Comparative activities of tetanus and botulinum toxins. Neuroscience 11: 29–34PubMedCrossRefGoogle Scholar
  71. Menestrina G, Forti S, Gambale F (1989) Interaction of tetanus toxin with lipid vesicles. Effects of pH, surface charge, and transmembrane potential on the kinetics of channel formation. Biophys J 55: 393–405PubMedCrossRefGoogle Scholar
  72. Mochida S, Poulain B, Weiler U, Habermann E, Taue L (1989) Light chain of tetanus toxin intracellularly inhibits acetylcholine release at neuro-neuronal synapses, and its internalization is mediated by heavy chain. FEBS Lett 253: 47–51PubMedCrossRefGoogle Scholar
  73. Montai MS, Blewitt R, Tomich JM, Montai M (1992) Identification of an ion channel-forming motif in the primary structure of tetanus and botulinum neurotoxins. FEBS Lett 313: 12–18CrossRefGoogle Scholar
  74. Montecucco C (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem Sci 11: 314–317CrossRefGoogle Scholar
  75. Montecucco C, Papini E, Schiavo G (1991) Molecular models of toxin membrane translocation. In: Alouf JE, Freer JH (eds) Sourcebook of bacterial protein toxins. Academic, London, pp 45–56Google Scholar
  76. Montecucco C, Papini E, Schiavo G, Padovan E, Rossetto O (1992) Ion channel and membrane translocation of diphtheria toxin. FEMS Microbiol Immunol 105: 101–112CrossRefGoogle Scholar
  77. Montesano R, Roth J, Robert A, Orci L (1982) Non-coated invaginations are involved in binding and internalization of cholera and tetanus toxin. Nature 296: 651–653PubMedCrossRefGoogle Scholar
  78. Morris NP, Consiglio E, Kohn LD, Habig WH, Hardegree MC, Helting TB (1980) Interaction of fragments B and C of tetanus toxin with neural and thyroid membranes and with gangliosides. J Biol Chem 255: 6071–6076PubMedGoogle Scholar
  79. Neale EA, Habig WH, Schrier BK, Bergey GK, Bowers LM, Koh J (1989) Applications of tetanus toxin for structure-function studies in neuronal cell cultures. In: Nisticó G, Bizzini B, Bytchenko B, Thau R (eds) 8th international conference on tetanus. Pythagora, Rome, pp 58–65Google Scholar
  80. Neville DM, Chang TM (1978) Receptor-mediated protein transport into cells. Entry mechanisms for toxins, hormones, antibodies, viruses, lysosomal hydrolases, asialoglycoproteins, and carrier proteins. Curr Top Membr Transport 10: 65–150CrossRefGoogle Scholar
  81. Niemann H (1991) Molecular biology of clostridial neurotoxins. In: Alouf JE, Freer JH (eds) Sourcebook of bacterial protein toxins. Academic, London, pp 303–348Google Scholar
  82. Nishiki T-i, Kamata Y, Nenoto Y, Omori A, Ito T, Takahashi M, Kozaki S (1994) Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J Biol Chem 269: 10498–10503PubMedGoogle Scholar
  83. Ochanda JO, Syuto B, Ohishi I, Naiki M, Kubo S (1986) Binding of Clostridium botulinum neurotoxin to gangliosides. J Biochem 100: 27–33PubMedGoogle Scholar
  84. Ogasawara J, Kamata Y, Sakaguchi G, Koraki S (1991) Properties of a protease-sensitive acceptor component in mouse brain synaptosomes for Clostridium botulinum type B neurotoxin. FEMS Microbiol Lett 79: 351–356CrossRefGoogle Scholar
  85. Orlandi PA, Curran PK, Fishman PH (1993) Brefeldin A blocks the response of cultured cells to cholera toxin. Implications for intracellular trafficking in toxin action. J Biol Chem 268: 12010–12016PubMedGoogle Scholar
  86. Papini E, Rappuoli R, Murgia M, Montecucco C (1993) Cell penetration of diphtheria toxin. Reduction of the interchain disulfide bridge is the rate-limiting step of translocation in the cytosol. J Biol Chem 268: 1567–1574PubMedGoogle Scholar
  87. Parfitt A, Neale EA, Fitzgerald SC, Nelson PG (1994) Homonymous neuromuscular preparation using the Campenot chamber. Soc Neurosci Abstr 20: 1089Google Scholar
  88. Parton RG, Ockleford CD, Critchley DR (1987) A study of the mechanism of intemalisation of tetanus toxin by primary mouse spinal cord cultures. J Neurochem 49: 1057–1068PubMedCrossRefGoogle Scholar
  89. Parton RG, Ockleford CD, Critchley DR (1988) Tetanus toxin binding to mouse spinal cord cells: an evaluation of the role of gangliosides in toxin internalization. Brain Res 475: 118–127PubMedCrossRefGoogle Scholar
  90. Paschal BM, Vallée RB (1987) Retrograde transport by the microtubule-associated protein MAP 1C. Nature 330: 181–183PubMedCrossRefGoogle Scholar
  91. Paschal BM, Shpetner HS, Valle RB (1987) MAP 1C is a microtubule-activated ATPase that translocates microtubules in vitro and has dynein-like properties. J Cell Biol 105: 1273–1282PubMedCrossRefGoogle Scholar
  92. Penner R, Neher E, Dreyer F (1986) Intracellular injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells. Nature 324: 76–78PubMedCrossRefGoogle Scholar
  93. Pierce EJ, Davison MD, Parton RG, Habig WH, Critchley DR (1986) Characterization of tetanus toxin binding to rat brain membranes. Biochem J 236: 845–852PubMedGoogle Scholar
  94. Poulain B, Mochida S, Weller U, Högy B, Habermann E, Wadsworth JDF, Shone CC, Dolly JO, Tauc L (1991) Heterologous combinations of heavy and light chains from botulinum neurotoxin A and tetanus toxin inhibit neurotransmitter release in Aplysia. J Biol Chem 266: 9580–9585PubMedGoogle Scholar
  95. Price DL, Griffin J, Young A, Peck K, Stocks A (1975) Tetanus toxin: direct evidence for retrograde intraaxonal transport. Science 188: 945–947PubMedCrossRefGoogle Scholar
  96. Price DL, Griffin JW, Peck K (1977) Tetanus toxin: evidence for binding at presynaptic nerve endings. Brain Res 121: 379–384PubMedCrossRefGoogle Scholar
  97. Rabasseda X, Blasi J, Marsal J, Dunant Y, Casanova A, Bizzini B (1988) Tetanus and botulinum toxins block the release of acetylcholine from slices of rat striatum and from the isolated electric organs of Torpedo at different concentrations. Toxicon 26: 329–336PubMedCrossRefGoogle Scholar
  98. Rauch G, Gambale F, Montai M (1990) Tetanus toxin channel in phosphatidylserine planar bilayers: conductance states and pH dependence. Eur Biophys J 18: 79–83PubMedCrossRefGoogle Scholar
  99. Roa M, Boquet P (1985) Interaction of tetanus toxin with lipid vesicles at low pH. J Biol Chem 260: 6827–6835PubMedGoogle Scholar
  100. Rogers TB, Snyder SH (1981) High-affinity binding of tetanus toxin to mammalian brain membranes. J Biol Chem 256: 2402–2407PubMedGoogle Scholar
  101. Sanchez-Prieto J, Sihra TS, Evans D, Ashton A, Dolly JO, Nicholls DG (1987) Botulinum toxin A blocks glutamate exocytosis from guinea-pig cerebral cortical synaptosomes. Eur J Biochem 165: 675–681PubMedCrossRefGoogle Scholar
  102. Sandvig K, Olsnes S (1991) Membrane translocation of diphtheria toxin. In: Alouf JE, Freer JH (eds) Sourcebook of bacterial protein toxins. Academic, London, pp 57–73Google Scholar
  103. Sansom M (1991) The biophysics of peptide models of ion channels. Prog Biophys Mol Biol 55: 139–235PubMedCrossRefGoogle Scholar
  104. Schengrund C-L, DasGupta BR, Ringler NJ (1991) Binding of botulinum and tetanus neurotoxins to ganglioside GT1b and derivatives thereof. J Neurochem 57: 1024–1032PubMedCrossRefGoogle Scholar
  105. Schiavo G, Papini E, Genna G, Montecucco C (1990) An intact interchain disulfide bond is required for the neurotoxicity of tetanus toxin. Infect Immun 58: 4136–4141PubMedGoogle Scholar
  106. Schiavo G, Ferrari G, Rossetto O, Montecucco C (1991) Tetanus toxin receptor. Specific cross-linking of tetanus toxin to a protein of NGF-differentiated PC 12 cells. FEBS Lett 290: 227–230PubMedCrossRefGoogle Scholar
  107. Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta BR, Montecucco C (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359: 832–835PubMedCrossRefGoogle Scholar
  108. Schmid SL, Fuchs R, Kielian M, Helenius A, Mellman R (1989) Acidification of endosome subpopulations. in wild-type Chinese hamster ovary cells and temperature-sensitive acidification-defective mutants. J Cell Biol 108: 1291–1300PubMedCrossRefGoogle Scholar
  109. Schmid MF, Robinson JP, DasGupta BR (1993) Direct visualization of botulinum neurotoxin-induced channels in phospholipid vesicles. Nature 364: 827–830PubMedCrossRefGoogle Scholar
  110. Schmitt A, Dreyer F, John C (1981) At least three sequential steps are involved in the tetanus toxin-induced block of neuromuscular transmission. Naunyn Schmiedebergs Arch Pharmacol 317: 326–330PubMedCrossRefGoogle Scholar
  111. Schwab ME, Thoenen H (1976) Electron microscopic evidence for a transsynaptic migration of tetanus toxin in spinal cord motorneurons: an autoradiographic and morphometric study. Brain Res 105: 213–227PubMedCrossRefGoogle Scholar
  112. Schwab ME, Suda K, Thoenen H (1979) Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport. J Cell Biol 82: 798–810PubMedCrossRefGoogle Scholar
  113. Sheridan RE (1993) Proton ionophores delay onset of botulinum paralysis in isolated mouse skeletal muscle. Soc Neurosci Abstr 19: 1125Google Scholar
  114. Shone CC, Hambleton P, Melling J (1985) Inactivation of Clostridium botulinum type A neurotoxin by trypsin and purification of two tryptic fragments. Eur J Biochem 151: 75–82PubMedCrossRefGoogle Scholar
  115. Shone CC, Hambleton P, Melling J (1987) A 50-kDa fragment from the NH2-terminus of the heavy subunit of Clostridium botulinum type A neurotoxin forms channels in lipid vesicles. Eur J Biochem 167: 175–180PubMedCrossRefGoogle Scholar
  116. Silverman JA, Mindell JA, Zhan H, Finkelstein A, Collier RJ (1994) Structure-function relationships in diphtheria toxin channels. I. Determining a minimal channel-forming domain. J Membr Biol 137: 17–28PubMedGoogle Scholar
  117. Simon SM, Blobel G (1991) A protein-conducting channel in the endoplasmic reticulum. Cell 65: 371–380PubMedCrossRefGoogle Scholar
  118. Simpson LL (1980) Kinetic studies of the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J Pharmacol Exp Ther 212: 16–21PubMedGoogle Scholar
  119. Simpson LL (1981) The origin, structure and pharmacological activity of botulinum toxin. Pharmacol Rev 33: 155–188PubMedGoogle Scholar
  120. Simpson LL (1982) The interaction between aminoquinolines and presynaptically acting neurotoxins. J Pharmacol Exp Ther 222. 34–48Google Scholar
  121. Simpson LL (1983) Ammonium chloride and methylamine hydrochloride antagonize clostridial neurotoxins. J Pharmacol Exp Ther 225: 546–552PubMedGoogle Scholar
  122. Simpson LL, Coffield JA, Bakry N (1994) Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. J Pharmacol Exp Ther 269: 256–262PubMedGoogle Scholar
  123. Simpson LL, Rapport MM (1971) Ganglioside inactivation of botulinum toxin. J Neurochem 18: 1341–1343PubMedCrossRefGoogle Scholar
  124. Staub GC, Walton KM, Schnaar RL, Nichols T, Baichwal R, Sandberg K, Rogers TB (1986) Characterization of the binding and internalization of tetanus toxin in a neuroblastoma hybrid cell line. J Neurosci 6: 1443–1451PubMedGoogle Scholar
  125. Stöckel K, Schwab M, Thoenen H (1975) Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory and adrenergic neurons. Brain Res. 99: 1–16PubMedCrossRefGoogle Scholar
  126. Tsukita S, Ishikawa H (1980) The movement of membranous organelles in axons. J Cell Biol 84: 513–530PubMedCrossRefGoogle Scholar
  127. Tsuzuki K, Yokosawa N, Syuto B, Ohishi I, Fujii N, Kimura K, Oguma K (1988) Establishment of a monoclonal antibody recognizing an antigenic site common to Clostridium botulinum types B, C1, D, and E toxins and tetanus toxin. Infect Immun 56: 898–902PubMedGoogle Scholar
  128. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42: 39–50PubMedCrossRefGoogle Scholar
  129. Vallée RB, Bloom GS (1991) Mechanisms of fast and slow axonal transport. Annu Rev Neurosci 14: 59–92PubMedCrossRefGoogle Scholar
  130. van Heyningen WE (1974) Gangliosides as receptors for tetanus toxin, cholera toxin and serotonin. Nature 249: 415–417CrossRefGoogle Scholar
  131. van Heyningen WE, Miller P (1961) The fixation of tetanus toxin by ganglioside. J Gen Microbiol 24: 107–119Google Scholar
  132. vanderSpek JC, Mindell JA, Finkelstein A, Murphy JR (1993) Structure/function analysis of the transmembrane domain of DAB389-interleukin-2, an interleukin-2 receptor-targeted fusion toxin. J Biol Chem 268: 12077–12082PubMedGoogle Scholar
  133. Walton KM, Sandberg K, Rogers TB, Schnaar RL (1988) Complex ganglioside expression and tetanus toxin binding by PC12 pheochromocytoma cells. J Biol Chem 263: 2055–2063PubMedGoogle Scholar
  134. Weigand H, Erdmann G, Wellhöner HH (1976) 125I-labelled botulinum A neurotoxin: pharmacokinetics in cats after intramuscular injection. Naunyn Schmiedebergs Arch Pharmacol 292: 161–165CrossRefGoogle Scholar
  135. Weiler U, Taylor CF, Habermann E (1986) Quantitative comparison between tetanus toxin, some fragments, and toxoid for binding and axonal transport in the rat. Toxicon 24: 1055–1063CrossRefGoogle Scholar
  136. Weiler U, Dauzenroth M-E, Gansel M, Dreyer F (1991) Cooperative action of the light chain of tetanus toxin and the heavy chain of botulinum toxin type A on the transmitter release of mammalian motor endplates. Neurosci Lett 122: 132–134CrossRefGoogle Scholar
  137. Wellhöner HH (1992) Tetanus and botulinum neurotoxins. In: Herken H, Hucho F (eds) Handbook of experimental pharmacology. Springer, Berlin Heidelberg New York, pp 357–417Google Scholar
  138. Wellhöner HH, Neville D Jr (1987) Tetanus toxin binds with high affinity to neuroblastoma X glioma hybrid cells NG 108–15 and impairs their stimulated acetylcholine release. J Biol Chem 262: 17374–17378PubMedGoogle Scholar
  139. Williams RS, Tse C-K, Dolly JO, Hambleton P, Melling J (1983) Radioiodination of botulinum neurotoxin typeAwith retention of biological activity and its binding to brain synaptosomes. EurJ Biochem 131: 437–445CrossRefGoogle Scholar
  140. Williamson LC, Neale EA (1994a) Tetanus toxin enters neurons through acidic endosomes: studies in spinal cord cell cultures. In: Freer J, Alouf JE (eds) Bacterial protein toxins. Fischer, Stuttgart, pp 410–411Google Scholar
  141. Williamson LC, Neale EA (1994b) Bafilomycin A1 inhibits the action of tetanus toxin in spinal cord neruons in cell culture. J Neurochem 63: 2342–2345PubMedCrossRefGoogle Scholar
  142. Williamson LC, Brown JE, Neale EA (1995) Differential effects of the seven serotypes of botulinum neurotoxin on mammalian central synapses. Soc Neurosci Abstr (in press)Google Scholar
  143. Williamson LC, Clarke WY, Fitzgerald SC, Neale EA (1992a) Tetanus toxin enters neurons through acidic endosomes. Soc Neurosci Abstr 18: 1601Google Scholar
  144. Williamson LC, Fitzgerald SC, Neale EA (1992b) Differential effects of tetanus toxin on inhibitory and excitatory neurotransmitter release from mammalian spinal cord cells in culture. J Neurochem 59: 2148–2157PubMedCrossRefGoogle Scholar
  145. Williamson LC, Fitzgerald SC, Neale EA (1993) Bafilomycin A1, a specific-vacuolar type H+-ATPase inhibitor, blocks the action of tetanus toxin in spinal cord neurons in cell culture. Mol Biol Cell 4: 325aGoogle Scholar
  146. Yavin E, Nathan A (1986) Tetanus toxin receptors on nerve cells contain a trypsin-sensitive component. Eur J Biochem 154: 403–407PubMedCrossRefGoogle Scholar
  147. Yoshida T, Chen CC, Zhang MS, Wu HC (1991) Disruption of the Golgi apparatus by brefeldin A inhibits the cytotoxicity of ricin, modeccin, and Pseudomonas toxin. Exp Cell Res 192: 389–395PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • J. L. Halpern
    • 1
  • E. A. Neale
    • 2
  1. 1.Division of Bacterial Products, Center for Biologics Evaluation and ResearchFood and Drug AdministrationBethesdaUSA
  2. 2.Laboratory of Developmental NeurobiologyNational Institute of Child Health and Human DevelopmentBethesdaUSA

Personalised recommendations