Skip to main content

Oscillatory and Intermittent Synchrony in the Hippocampus: Relevance to Memory Trace Formation

  • Conference paper
Temporal Coding in the Brain

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

Summary

The different cell populations of the hippocampus are involved in behaviorregulated intermittent population bursts (sharp-waves, (SPW) and dentate spikes) and oscillations (theta, gamma and 200 Hz). SPW occur during consummatory behaviors and slow wave sleep. This field potential reflects summated EPSPs in the apical dendrites of CA1 pyramidal neurons as a result of population synchrony in the CA3 recurrent network. During SPW bursts, CA1 pyramidal cells display highly coherent transient network oscillations (200 Hz). Participating pyramidal cells discharge at a significantly lower rate than the frequency of the population oscillation and their action potentials are phase-locked to the simultaneously recorded oscillatory field potentials. Antagonistic to these intermittent events are the theta (6–10 Hz) and associated gamma (40–100 Hz) oscillations during exploratory behavior and REM sleep. In the intact rat the gamma pattern has its largest amplitude in the hilus, is modulated by theta and is entrained by the entorhinal input. The theta pattern is generated by several spatially distinct but highly coherent dipoles and requires an external pacemaker (septum).

The cooperative neuronal discharges underlying the various oscillatory and intermittent synchronous patterns may support neuronal mechanisms underlying memory trace formation in the hippocampus. We hypothesize that such a process requires two stages. 1) During theta-associated exploration, activation vectors from the entorhinal cortex code mnemonic representations in subsets of CA 3 pyramidal cells, where information is temporarily held. 2) At the end of exploration, CA3 cells are disinhibited and discharge in bursts, the most recently and hence most strongly excited ones first (burst initiators). Excitation is spread to less excitable pyramidal cells by the extensive recurrent CA3 collateral system. In essence, the information gathered during the exploratory stage is “replayed” during the SPW bursts. The most important aspect of the model is that the sequential recruitment of individual cells into population bursts (dynamic hierarchy) is based on representations acquired during exploration. In this two-stage model both activation patterns (theta and gamma) and intermittent patterns (SPW) subserve to process specific information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso A, Llinas RR (1989) Subthreshold Na +-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342:175–177

    Article  PubMed  CAS  Google Scholar 

  • Amaral DG (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol 182:851–914

    Article  PubMed  CAS  Google Scholar 

  • Amaral D, Witter M (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591

    Article  PubMed  CAS  Google Scholar 

  • Azouz R, Jensen MS, Yaari Y (1992) Interictal activity induces long-term enhancement of excitatory postsynaptic potentials in the hippocampus. In: Engel J Jr, Wasterlain C, Cavalheiro EA, Heinemann U, Avanzini G (eds) Molecular neurobiology of epilepsy. Epilespy Res Suppl 9. Elsevier, Amsterdam, pp 313–316

    Google Scholar 

  • Bland BH (1990) Physiology and pharmacology of hippocampal formation theta rhythms. Prog Neurobiol 26:1–54

    Article  Google Scholar 

  • Bland B, Anderson P, Ganes T, Sveen O (1980) Automated analysis of rhythmicity of physiologically identified hippocampal formation neurons. Exp Brain Res 38:205–219

    Article  PubMed  CAS  Google Scholar 

  • Bliss TVP, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol (Lond) 232:331–356

    CAS  Google Scholar 

  • Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31-39

    Google Scholar 

  • Bragin A, Jandó G, Nádasdy Z, Horvath Z, Buzsáki G (1992) The dentate spike: a new network pattern reflecting interneuronal synchrony. Soc Neurosci Abst 141.11

    Google Scholar 

  • Bragin A, Jandó G, Nádasdy Z, Hetke J, Wise K, Buzsáki G (1993) Gamma frequency oscillation in the hippocampus: modulation by theta activity. Soc Neurosci Abst 148.3

    Google Scholar 

  • Brankack J, Stewart M, Fox SE (1993) Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators. Brain Res 615:310–327

    Article  PubMed  CAS  Google Scholar 

  • Buzsáki G (1984) Feed-forward inhibition in the hippocampal formation. Prog Neurobiol 22:131–153

    Article  PubMed  Google Scholar 

  • Buzsáki G (1986) Hippocampal sharp waves: their origin and significance. Brain Res 398:242–252

    Article  PubMed  Google Scholar 

  • Buzsáki G (1989) A two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31:551–570

    Article  PubMed  Google Scholar 

  • Buzsáki G (1991) The thalamic clock: emergent network properties. Neuroscience 41:351–364

    Article  PubMed  Google Scholar 

  • Buzsáki G, Eideiberg E (1982) Direct afferent excitation and long-term potentiation of hippocampal interneurons. J Neurophysiol 48:597–607

    PubMed  Google Scholar 

  • Buzsáki G, Leung L, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res Rev 6:139–171

    Article  Google Scholar 

  • Buzsáki G, Czopf J, Kondakor I, Kellenyi L (1986) Laminar distribution of hippocampal rhythmic slow activity (RSA) in the behaving rat: current source density analysis, effects of urethane and atropine. Brain Res 365:125–137

    Article  PubMed  Google Scholar 

  • Buzsáki G, Haas HL, Anderson EG (1987) Long-term potentiation induced by physiologically relevant stimulus patterns. Brain Res 435:331–333

    Article  PubMed  Google Scholar 

  • Buzsáki G, Horvath Z, Urioste R, Hetke J, Wise K (1992) High-frequency network oscillation in the hippocampus. Science 256:1025–1027

    Article  PubMed  Google Scholar 

  • Charpak S, Pare D, Llinás RR (1992) Entorhinal cortex (EC) generates 40 Hz hippocampal oscillations. Soc Neurosci Abst 386.5

    Google Scholar 

  • Chattarji S, Stanton PK, Sejnowski TJ (1989) Commissural synapses, but not mossy fiber synapses, in hippocampal field CA3 exhibit associative long-term potention and depression. Brain Res 495:145–150

    Article  PubMed  CAS  Google Scholar 

  • Christian EP, Dudek FE (1988) Electrophysiological evidence from glutamate microapplications for local excitatory circuits in the CA1 area of rat hippocampal slices. J Neurophysiol 59:110–123

    PubMed  CAS  Google Scholar 

  • Chrobak JJ, Urioste R, Buzsáki G (1992) Hippocampal-retrohippocampal interactions during sharp waves. Soc Neurosci Abstr 141.13

    Google Scholar 

  • Chrobak JJ, Urioste R, Buzsáki G (1993) Selective activation of deep layer retrohippocampal neurons during hippocampal sharp waves. Soc Neurosci Abstr 19:148.2

    Google Scholar 

  • Churchland P, Sejnowski T (1992) The computational brain. MIT Press, Cambridge, Mass

    Google Scholar 

  • Douglas RM (1977) Long-lasting synaptic potentiation in the dentate gyrus following brief high frequency stimulation. Brain Res 126:361–365

    Article  PubMed  CAS  Google Scholar 

  • Eichenbaum H, Otto T (1992) The hippocampus — what does it do? Behav Neural Biol 57:2–36

    Article  PubMed  CAS  Google Scholar 

  • Fox SE, Ranck JB Jr (1981) Electrophysiological characteristics of hippocampal complex-spike cells and theta cells. Exp Brain Res 41:299–313

    Article  Google Scholar 

  • Freund TF, Antal M (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336:170–173

    Article  PubMed  CAS  Google Scholar 

  • Gray CM (1993) Rhythmic activity in neuronal systems: insights into integrative function. In: Nadel L, Stein D (eds) SFI Studies in the sciences of complexity. AddisonWesley, pp 89–161

    Google Scholar 

  • Hebb DO (1949) Organization of behavior. Wiley, New York

    Google Scholar 

  • Hsu M, Buzsáki G (1993) Vulnerability of mossy fiber targets in the rat hippocampus to forebrain ischemia. J Neurosci 13:3964–3979

    PubMed  CAS  Google Scholar 

  • Ishizuka N, Weber J, Amaral D (1990) Organization of intrahippocampal projections originating from CA3 pyramical cells in the rat. J Comp Neurol 295:580–623

    Article  PubMed  CAS  Google Scholar 

  • Jones RSG (1993) Entorhinal-hippocampal connections: a speculative view of their function. Trends Neurosci 16:58–64

    Article  PubMed  CAS  Google Scholar 

  • Jung MW, McNaughton BL (1993) Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus 3:165–182

    Article  PubMed  CAS  Google Scholar 

  • Kelso SR, Ganong AH, Brown TH (1983) Hebbian synapses in the hippocampus. Proc Natl Acad Sci USA 83:5326–5330

    Article  Google Scholar 

  • Kohonen T (1984) Self-organization and associative memory. Springer-Verlag, Berlin

    Google Scholar 

  • Konopacki J, Maclver MB, Bland BH, Roth SH (1987) Theta in hippocampal slices: relation to synaptic responses of dentate neurons. Brain Res Bull 18:25–27

    Article  PubMed  CAS  Google Scholar 

  • Konorski J (1948) Conditioned reflexes and neuronal organization. Cambridge University Press, Cambridge

    Google Scholar 

  • Larson J, Lynch G (1986) Induction of synaptic potentiation in the hippocampus by patterned stimulation involves two events. Science 232:985–988

    Article  PubMed  CAS  Google Scholar 

  • Lee MG, Chrobak JJ, Sik A, Wiley RG, Buzsáki G (1993) Hippocampal EEG changes with selective lesions of the septal cholinergic system. Annual Meeting of the American EEG Society, New Orleans

    Google Scholar 

  • Leung LS (1985) Model of gradual phase shift of the theta rhythm in the rat. J Neurophysiol 42:1051–1065

    Google Scholar 

  • Leung LS (1992) Fast (beta) rhythms in the hippocampus: a review. Hippocampus. 2:93–98

    Article  PubMed  CAS  Google Scholar 

  • Leung LS, Yim CC (1991) Intrinsic membrane potential oscillations in hippocampal neurons in vitro. Brain Res 553:261–274

    Article  PubMed  CAS  Google Scholar 

  • Li X-G, Somogyi P, Ylinen A, Buzsáki G (1993) The hippocampal CA3 network: an in vivo intracellular labeling study. J Comp Neurol 338:1–29

    Article  Google Scholar 

  • Lopes da Silva FH, Witter M, Boeijinga PH, Lohman A (1990) Anatomie organization and physiology of the limbic cortex. Physiol Rev 70:453–511

    Google Scholar 

  • Lorente de Nó R (1934) Studies of the structure of the cerebral cortex: II. Continuation of the study of the ammonic system. J Psychol Neurol 46:113–177

    Google Scholar 

  • Lynch G (1986) Synapses, circuits, and the beginnings of memory. MIT Press, Cambridge

    Google Scholar 

  • Mac Vicar B, Tse FWY (1989) Local neuronal circuitry underlying cholinergic rhythmic slow activity in CA3 area of rat hippocampal slices. J Physiol (Lond.) 417:197–212

    CAS  Google Scholar 

  • McNaughton BL, Morris RGM (1987) Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci 10:408–415

    Article  Google Scholar 

  • Mitchell SJ, Ranck JB Jr (1980) Generation of theta rhythm in medial entorhinal cortex of freely moving rats. Brain Res 189:49–66

    Article  PubMed  CAS  Google Scholar 

  • Mizumori SJY, McNaughton BL, Barnes CA, Fox KB (1989) Preserved spatial coding in hippocampal CA1 pyramidal cells during reversible suppression of CA3 output: evidence for pattern completion in hippocampus. J Neurosci 9:3915–3928

    PubMed  CAS  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon, Oxford

    Google Scholar 

  • Otto T, Eichenbaum H, Wiener SI, Wible CG (1991) Learning-related patterns of CA1 spike trains parallel stimulation parameters optimal for inducing hippocampal long-term potentiation. Hippocampus 1:181–192

    Article  PubMed  CAS  Google Scholar 

  • Pavlides C, Winson J (1989) Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. J Neurosci 9:2907–2918

    PubMed  CAS  Google Scholar 

  • Pavlides C, Greenstein YJ, Grudman M, Winson J (1988) Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of theta rhythm. Brain Res 439:383–387

    Article  PubMed  CAS  Google Scholar 

  • Quirk GJ, Muller RU, Kubie JL, Ranck JB Jr (1992) The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. J Neurosci 12:1945–1963

    PubMed  CAS  Google Scholar 

  • Ranck JB Jr (1973) Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Exp Neurol 42:461–531

    Google Scholar 

  • Ribak CE, Gall CM, Mody I (1992) The dentate gyrus and its role in seizures. Elsevier, Amsterdam

    Google Scholar 

  • Rose G, Dunviddie TV (1986) Induction of hippocampal long-term potentiation using physiologically patterned stimulation. Neurosci Lett 69:244–248

    Article  PubMed  CAS  Google Scholar 

  • Sastry BR, Goh JW, Auyeung A (1986) Associative induction of posttetanic and longterm potentiation in CA1 neurons of rat hippocampus. Science 232:988–990

    Article  PubMed  CAS  Google Scholar 

  • Schaffer K (1892) Beitrag zur Histologie der Ammonshorn Formation. Arch Microsk Anat 39:611–632

    Article  Google Scholar 

  • Scharfman HE (1991) Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J Neurosci 11:1660–1673

    PubMed  CAS  Google Scholar 

  • Soltesz I, Mody I (1994) Patch-clamp recordings reveal powerful GABAergic inhibition in dentate hilar neurons. J Neurosci 14:2365–2376

    PubMed  CAS  Google Scholar 

  • Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys and humans. Psychol Rev 99:5–231

    Google Scholar 

  • Steriade M, Llinas RR (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68:649–741

    PubMed  CAS  Google Scholar 

  • Stewart M, Fox SE (1990) Do septal neurons pace the hippocampal theta rhythm? Trends Neurosci 13:163–168

    Article  PubMed  CAS  Google Scholar 

  • Stumpf C (1965) The fast component in the electrical activity of rabbit’s hippocampus. Electroencephal Clin Neurophysiol 18:477–486

    Article  CAS  Google Scholar 

  • Suzuki SS, Smith GK (1987) Spontaneous EEG spikes in the normal hippocampus. I. Behavioral correlates, laminar profiles and bilateral synchrony. Electroencephal Clin Neurophysiol 67:438–459

    Google Scholar 

  • Swanson LW, Kohler C (1986) Anatomical evidence for direct projections from the entorhinal area to the entire cortical mantle in the rat. J Neurosci 6:3010–3023

    PubMed  CAS  Google Scholar 

  • Tamamaki N, Nojyo Y (1991) Crossing fiber arrays in the rat hippocampus as demonstrated by three-dimensional reconstruction. J Comp Neurol 303:435–442

    Article  PubMed  CAS  Google Scholar 

  • Thompson LT, Best PJ (1989) Place cell and silent cells in the hippocampus of freelybehaving rats. J Neurosci 9:2882–2890

    Google Scholar 

  • Thomson AM, Radpour S (1991) Excitatory connections between CA1 pyramidal cells revealed by spike-triggered averaging in slices of rat hippocampus are partially NMDA receptor mediated. Eur J Neurosci 3:587–601

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Miles R (1991) Neuronal networks of the hippocampus. Cambridge University Press, Cambridge

    Google Scholar 

  • Traub RD, Miles R, Buzsáki G (1992) Computer simulation of carbachol-driven rhythmic population oscillations in the CA3 region of the in vitro rat hippocampus. J Physiol (Lond.) 451:653–672

    CAS  Google Scholar 

  • Treves A, Rolls ET (1991) What determines the capacity of autoassociative memories in the brain? Network 2:371–397

    Article  Google Scholar 

  • Vanderwolf CH (1969) Hippocampal electrical activity and voluntary movement in the rat. Electroencephal Gin Neurophysiol 26:407–418

    Article  CAS  Google Scholar 

  • Van Hoesen GW, Pandya DN (1975) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections. Brain Res 95:39–59

    Google Scholar 

  • Wigstrom H, Gustafsson B (1985) On long-lasting potentiation in the hippocampus: a propposed mechanism for its dependence on coincident pre-and postsynaptic activity. Acta Physiol Scand 123:519–522

    Article  PubMed  CAS  Google Scholar 

  • Winson J, Abzug C (1978) Neuronal transmission through hippocampal pathway dependent on behavior. J Neurophysiol 41:716–732

    PubMed  CAS  Google Scholar 

  • Yeckel MF, Berger TW (1990) Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. Proc Natl Acad Sci USA 87:5832–5836

    Article  PubMed  CAS  Google Scholar 

  • Ylinen A, Sik A, Bragin A, Jando G, Buzsáki G (1993) Intracellular correlates of hippocampal sharp wave bursts in vivo. Soc Neurosci Abstr 19:148.4

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buzsáki, G. et al. (1994). Oscillatory and Intermittent Synchrony in the Hippocampus: Relevance to Memory Trace Formation. In: Buzsáki, G., Llinás, R., Singer, W., Berthoz, A., Christen, Y. (eds) Temporal Coding in the Brain. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85148-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85148-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85150-6

  • Online ISBN: 978-3-642-85148-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics