Skip to main content

Chaotic Oscillations and the Genesis of Meaning in Cerebral Cortex

  • Conference paper
Book cover Temporal Coding in the Brain

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

Abstract

Single neurons generate action potentials that express their output in pulse frequencies, so that sensory stimuli can be microscopically expressed as spatial patterns of phase-locked firing of “feature detector” neurons. The visual, auditory, somatic, and olfactory cortices generate dendritic potentials that oscillate at frequencies from 1-100 Hz. These waves reveal macroscopic activity arising from synaptic interactions of millions of neurons. They share a spatially coherent oscillation as a “carrier,” by which spatial patterns of amplitude modulation (AM) are transmitted in distinctive configurations, when subjects receive sensory stimuli they have learned to discriminate. These spatial AM patterns are unique to each subject, are not invariant with respect to stimuli, and cannot be derived from the stimuli by logical operations. The carrier is aperiodic, usually dispersed over a wide spectral range. Our simulations of the carrier indicate that its dynamics is chaotic, and that sequential patterns are freshly constructed during perception, because chaotic systems can create as well as destroy information. The entire experience of a subject, which is embedded in synaptic connections in cortex that were modified during learning, can be brought instantly to bear at each state transition by which a new construction is initiated. It is suggested that “feature binding” revealed by microscopic recording is related to the formation of a “chaotic construct” early in the process of perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, New York

    Book  Google Scholar 

  • Andersen P, Andersson SA (1968) Physiological basis of the alpha rhythm. Appleton, New York

    Google Scholar 

  • Bartlett FC (1932) Remembering. Cambridge University Press, New York, 2nd ed. 1967

    Google Scholar 

  • Bressler SL (1987a) Functional relation of olfactory bulb and cortex. I. Spatial variation of bulbocortical interdependence. Brain Res 409:285–293

    Article  PubMed  CAS  Google Scholar 

  • Bressler SL (1987 b) Functional relation of olfactory bulb and cortex. II. Model for driving of cortex by bulb. Brain Res 409:239–301

    Google Scholar 

  • Bressler SL (1990) The gamma wave: a cortical information carrier? Trends Neurosci 13:161–162

    Article  PubMed  CAS  Google Scholar 

  • Bressler SL, Freeman WJ (1980) Frequency analysis of olfactory system EEG in cat, rabbit and rat. Electroencephalography Clin Neurophysiol 50:19–24

    Article  CAS  Google Scholar 

  • Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Biol Cybernet 60:121–130

    Article  CAS  Google Scholar 

  • Edelman JA, Freeman WJ (1990) Simulation and analysis of a model of mitral-granule cell population interactions in the mammalian olfactory bulb. Proc Intl Joint Conference Neural Networks I: 62–65

    Google Scholar 

  • Eeckman FH, Freeman WJ (1990) Correlations between unit firing and EEG in the rat olfactory system. Brain Res 528:238–244

    Article  PubMed  CAS  Google Scholar 

  • Eeckman FH, Freeman WJ (1991) Asymmetric sigmoid nonlinearity in the rat olfactory system. Brain Res 557:13–21

    Article  PubMed  CAS  Google Scholar 

  • Elul R (1972) The genesis of the EEG. Int Rev Neurobiol 15:227–272

    Article  Google Scholar 

  • Engel AK, Koenig P, Kreiter AK, Schulen TB, Singer W (1992) Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci 15:218–226

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ (1974) Stability characteristics of positive feedback in a neural population. Transactions IEEE Biomed Engin 21:358–364

    Article  CAS  Google Scholar 

  • Freeman WJ (1975) Mass action in the nervous system, Academic Press, New York

    Google Scholar 

  • Freeman WJ (1979a) Nonlinear gain mediating cortical stimulus-response relations. Biol Cybernet 33:237–247

    Article  CAS  Google Scholar 

  • Freeman WJ (1979 b) Nonlinear dynamics of paleocortex manifested in the olfactory EEG. Biol Cybernet 35:21–37

    Article  CAS  Google Scholar 

  • Freeman WJ (1979 c) EEG analysis gives model of neuronal template-matching mechanism for sensory search with olfactory bulb. Biol Cybernet 35:221–234

    Article  CAS  Google Scholar 

  • Freeman WJ (1987 a) Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybernet 56:139–150

    Article  CAS  Google Scholar 

  • Freeman WJ (1987 b) Techniques used in the search for the physiological basis of the EEG. In: Gevins A, Remond A (eds). Handbook of electroencephalography & clinical neurophysiology. Vol 3A, Part 2, Ch. 18. Elsevier, Amsterdam, pp 583–664

    Google Scholar 

  • Freeman WJ (1990) On the problem of anomalous dispersion in chaoto-chaotic phase transitions of neural masses, and its significance for the management of perceptual information in brains. In: Haken H, Stadler M (eds.) Synergetics of cognition. Vol 45, Springer-Verlag, Berlin, pp 126–143

    Google Scholar 

  • Freeman WJ (1991a) The physiology of perception. Sci Amer 264:78–85

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ (1991b) Development of a new science of brain dynamics with guidance from the theory of nonlinear dynamics and chaos. Proc 8th Int Conference Biomagnetism, Muenster, Germany, pp 1–4

    Google Scholar 

  • Freeman WJ (1992 a) Tutorial in neurobiology: From single neurons to brain chaos. Int J Bifurcation Chaos 2:451–482

    Article  Google Scholar 

  • Freeman WJ (1992b) Predictions on neocortical dynamics derived from studies in paleocortex In: Basar, E. and Bullock, TH (eds.) Induced rhythms of the brain. Birkhaeuser, Cambridge, MA, pp 183–199

    Google Scholar 

  • Freeman WJ, Baird B (1987) Relation of olfactory EEG to behavior: Spatial analysis. Behav Neurosci 101:393–408

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ, Grajski KA (1987) Relation of olfactory EEG to behavior: Factor analysis. Behav Neurosci 101:766–777

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ, Schneider W (1982) Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors. Psychophysiology 19:44–56

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ, van Dijk B (1987) Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey. Brain Res 422:267–276

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ, Viana Di Prisco G (1986) Relation of olfactory EEG to behavior: Time series analysis. Behav Neurosci 100:753–763

    Article  PubMed  CAS  Google Scholar 

  • Grajski KA, Breiman L, Viana Di Prisco G, Freeman WJ (1986) Classification of EEG spatial patterns with tree-structured methodology. IEEE Trans Biomed Engin 33:1076–1086

    Article  CAS  Google Scholar 

  • Grajski KA, Freeman WJ (1989) Spatial EEG correlates of non-associative and associative learning in rabbits. Behav Neurosci 103:790–804

    Article  PubMed  CAS  Google Scholar 

  • Granger R, Ambros-Ingerson J, Lynch G (1989) Derivation of encoding characteristics of layer II cerebral cortex. J Cognit Sci 1:61–87

    Google Scholar 

  • Gray CM, Koenig P, Engel A, Singer W (1989) Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus properties. Nature 338:334–337

    Article  PubMed  CAS  Google Scholar 

  • Gray CM, Skinner JE (1988) Field potential response changes in the rabbit olfactory bulb accompany behavioral habituation during repeated presentation of unreinforced odors. Exp Brain Res 73:189–197

    Article  PubMed  CAS  Google Scholar 

  • Haken H, Stadler M (1990) Synergetics of cognition. Springer-Verlag, Berlin

    Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architectures of the cat’s visual cortex. J Physiol 160:106–154

    PubMed  CAS  Google Scholar 

  • Kammen DM, Hohnes PJ, Koch C (1989) Cortical architecture and oscillations in neural networks: Feedback versus local coupling. In: Cotterill RMJ (ed.) Models of brain function. Cambridge University Press

    Google Scholar 

  • Koenig P, Schillen TB (1991) Stimulus-dependent assembly formation of oscillatory responses: I. Synchronization. Neural comp 3:155–166

    Article  Google Scholar 

  • Lashley K (1948) The mechanism of vision. Journal Press, Provincetown MA

    Google Scholar 

  • Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc Inst Radio Engin 47:1940–1951

    Google Scholar 

  • Li Z, Hopfield JJ (1989) Modeling the olfactory bulb and its neural oscillatory processings. Biol Cybernet 61:379–392

    Article  CAS  Google Scholar 

  • Liljenstrom H (1991) Modelling the dynamics of olfactory cortex using simplified network units and realistic architecture. Int J Neural Systems 2:1–15

    Article  Google Scholar 

  • Llinas R (1988) The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science 242:1654–1664

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Kress G, Barczys C, Freeman WJ (1991) Attractor reconstruction from eventrelated multi-electrode EEG data. Holden AV (ed.) Proc. Intern. Symposium Mathematical Approaches to Brain Functioning Diagnostics (IBRO) Singapore, World Scientific, pp 1–14

    Google Scholar 

  • Milner PM (1974) A model for visual shape recognition. Psych Rev 81:521–535

    Article  CAS  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic cortex. J Neurophysiol 20:408–434

    PubMed  CAS  Google Scholar 

  • Rall W, Shepherd GM (1968) Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J Neurophysiol 31:884–915

    PubMed  CAS  Google Scholar 

  • Skarda CA, Freeman WJ (1987) How brains make chaos to make sense of the world. Behav Brain Sci 10:161–195

    Article  Google Scholar 

  • Thompson JMT, Stewart HB (1988) Nonlinear dynamics and chaos. Wiley, New York

    Google Scholar 

  • Tovee MJ, Rolls EJ (1992) The functional nature of neuronal oscillations. Trends Neurosci 15:187

    Article  Google Scholar 

  • Tsuda I (1991) Chaotic itinerancy as a dynamical basis of hermeneutics in brain and mind. World Futures 32:167–184

    Article  Google Scholar 

  • Viana Di Prisco G (1984) Hebb synaptic plasticity. Prog Neurobiol 22:89–102

    Article  Google Scholar 

  • von der Malsburg C (1983) How are nervous structures organized? In: Basar E, Flohr H, Haken H, Mandell AJ (eds.) Synergetics of the brain. Springer-Verlag, Berlin, pp 238–249

    Google Scholar 

  • Wilson MA, Bower JM (1992) Cortical oscillations and temporal interactions in a computer simulation of piriform cortex. J Neurophysiol 67:981–995

    PubMed  CAS  Google Scholar 

  • Yao Y, Freeman WJ, Burke B, Yang Q (1991) Pattern recognition by a distributed neural network: An industrial application. Neural Networks 4:103–121

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freeman, W.J., Barrie, J.M. (1994). Chaotic Oscillations and the Genesis of Meaning in Cerebral Cortex. In: Buzsáki, G., Llinás, R., Singer, W., Berthoz, A., Christen, Y. (eds) Temporal Coding in the Brain. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85148-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85148-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85150-6

  • Online ISBN: 978-3-642-85148-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics