Srn-1Cun+1O2n: From One Dimension to Two Dimensions via Trellis Lattices

  • T. M. Rice
  • S. Gopalan
  • M. Sigrist
  • F. C. Zhang
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 118)

Abstract

The key elements in all known cuprate superconductors are lightly doped Cu02-planes. Recently a new homologous series of compounds Sr n−1Cu n+1O2n have been reported in which the planes contain a parallel array of line defects which form a trellis lattice with ladder-segments of the square lattice weakly coupled through triangular line defects. The magnetic properties of undoped compounds will be dominated by the properties of the ladders. Heisenberg s = 1/2 ladders can have a spin liquid groundstate with a spin gap if the number of rungs is odd so that a short range RVB groundstate is predicted for such trellis lattices. Using a t- J model to describe the doped material leads to the prediction of a d- wave RVB superconducting groundstate with a large spin gap.

Keywords

Haldane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.W. Anderson, Science 235, 1196 (1987).CrossRefADSGoogle Scholar
  2. [2]
    M. Ogata, M.U. Luchini, S. Sorella and F.F. Assaad, Phys. Rev. Lett. 66, 2388 (1991).CrossRefADSGoogle Scholar
  3. [3]
    Z. Hiroi, M. Azuma, M. Takano and Y. Bando, J. Sol. St. Chem. 95, 230 (1991);CrossRefADSGoogle Scholar
  4. M. Takano, Z. Hiroi, M. Azuma and Y. Takeda, Jap. J. of App. Phys. 7, 3 (1992);Google Scholar
  5. H. Miiller-Buschbaum, Ang. Chem. 89, 704 (1977).CrossRefGoogle Scholar
  6. [4]
    T.M. Rice, S. Gopalan and M. Sigrist, Europhys. Lett. 23, 445 (1993).CrossRefADSGoogle Scholar
  7. [5]
    R. Hirsch, Diplomarbeit Uni. Köln, 1988 (unpublished).Google Scholar
  8. [6]
    E. Dagotto, J. Riera and D. Scalapino, Phys. Rev. B 45, 5744 (1992);CrossRefADSGoogle Scholar
  9. T. Barnes et al., Phys. Rev. B 47, 3196 (1993).CrossRefADSGoogle Scholar
  10. [7]
    S.P. Strong and A.J. Millis, Phys. Rev. Lett. 69, 2419 (1992).CrossRefADSGoogle Scholar
  11. [8]
    S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 (1990).CrossRefADSGoogle Scholar
  12. [9]
    S. Gopalan et al., (to be published).Google Scholar
  13. [10]
    M. Ogata, M.U. Luchini and T.M. Rice, Phys. Rev. B 44, 12083 (1991).CrossRefADSGoogle Scholar
  14. [11]
    M. Imada, Phys. Rev. B 48, 550 (1993) and references therein.Google Scholar
  15. [12]
    M. Sigrist, T.M. Rice and F.C. Zhang, ETH-preprint TH/93–35.Google Scholar
  16. [13]
    F.C. Zhang, C. Gros, T.M. Rice and H. Shiba, Super. Sci. and Tech. 1, 36 (1988).CrossRefADSGoogle Scholar
  17. [14]
    I. Affleck and J.B. Marston, Phys. Rev. B 37, 3774 (1988).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • T. M. Rice
    • 1
  • S. Gopalan
    • 1
  • M. Sigrist
    • 2
  • F. C. Zhang
    • 3
  1. 1.Theoretische Physik, ETH-HönggerbergZürichSwitzerland
  2. 2.Paul Scherrer InstitutVilligen PSISwitzerland
  3. 3.Physics Department (UCTP), ML11University of CincinnatiCincinnatiUSA

Personalised recommendations