Advertisement

Srn-1Cun+1O2n: From One Dimension to Two Dimensions via Trellis Lattices

  • T. M. Rice
  • S. Gopalan
  • M. Sigrist
  • F. C. Zhang
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 118)

Abstract

The key elements in all known cuprate superconductors are lightly doped Cu02-planes. Recently a new homologous series of compounds Sr n−1Cu n+1O2n have been reported in which the planes contain a parallel array of line defects which form a trellis lattice with ladder-segments of the square lattice weakly coupled through triangular line defects. The magnetic properties of undoped compounds will be dominated by the properties of the ladders. Heisenberg s = 1/2 ladders can have a spin liquid groundstate with a spin gap if the number of rungs is odd so that a short range RVB groundstate is predicted for such trellis lattices. Using a t- J model to describe the doped material leads to the prediction of a d- wave RVB superconducting groundstate with a large spin gap.

Keywords

Cuprate Superconductor Hole Doping Triplet Excitation Spin Liquid Quasiparticle Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.W. Anderson, Science 235, 1196 (1987).CrossRefADSGoogle Scholar
  2. [2]
    M. Ogata, M.U. Luchini, S. Sorella and F.F. Assaad, Phys. Rev. Lett. 66, 2388 (1991).CrossRefADSGoogle Scholar
  3. [3]
    Z. Hiroi, M. Azuma, M. Takano and Y. Bando, J. Sol. St. Chem. 95, 230 (1991);CrossRefADSGoogle Scholar
  4. M. Takano, Z. Hiroi, M. Azuma and Y. Takeda, Jap. J. of App. Phys. 7, 3 (1992);Google Scholar
  5. H. Miiller-Buschbaum, Ang. Chem. 89, 704 (1977).CrossRefGoogle Scholar
  6. [4]
    T.M. Rice, S. Gopalan and M. Sigrist, Europhys. Lett. 23, 445 (1993).CrossRefADSGoogle Scholar
  7. [5]
    R. Hirsch, Diplomarbeit Uni. Köln, 1988 (unpublished).Google Scholar
  8. [6]
    E. Dagotto, J. Riera and D. Scalapino, Phys. Rev. B 45, 5744 (1992);CrossRefADSGoogle Scholar
  9. T. Barnes et al., Phys. Rev. B 47, 3196 (1993).CrossRefADSGoogle Scholar
  10. [7]
    S.P. Strong and A.J. Millis, Phys. Rev. Lett. 69, 2419 (1992).CrossRefADSGoogle Scholar
  11. [8]
    S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 (1990).CrossRefADSGoogle Scholar
  12. [9]
    S. Gopalan et al., (to be published).Google Scholar
  13. [10]
    M. Ogata, M.U. Luchini and T.M. Rice, Phys. Rev. B 44, 12083 (1991).CrossRefADSGoogle Scholar
  14. [11]
    M. Imada, Phys. Rev. B 48, 550 (1993) and references therein.Google Scholar
  15. [12]
    M. Sigrist, T.M. Rice and F.C. Zhang, ETH-preprint TH/93–35.Google Scholar
  16. [13]
    F.C. Zhang, C. Gros, T.M. Rice and H. Shiba, Super. Sci. and Tech. 1, 36 (1988).CrossRefADSGoogle Scholar
  17. [14]
    I. Affleck and J.B. Marston, Phys. Rev. B 37, 3774 (1988).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • T. M. Rice
    • 1
  • S. Gopalan
    • 1
  • M. Sigrist
    • 2
  • F. C. Zhang
    • 3
  1. 1.Theoretische Physik, ETH-HönggerbergZürichSwitzerland
  2. 2.Paul Scherrer InstitutVilligen PSISwitzerland
  3. 3.Physics Department (UCTP), ML11University of CincinnatiCincinnatiUSA

Personalised recommendations