Advertisement

Matrix-Model Approach to Electron Correlations in a Strong Magnetic Field

  • S. Hikami
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 118)

Abstract

The lowest Landau level of the two dimensional electron in a strong magnetic field is investigated by the random matrix model technique. We discuss the universality of the electron correlation of the edge state for the arbitrary polynomial measure form of the eigenvalue, based upon the large N limit of the matrix formulations. The edge state is described by the c = 1 conformal field theory. The relation of the matrix model to the 2D quantum gravity is discussed. It is shown that a matrix model which describes the lowest Landau level state with an appropriate interaction becomes a new model of the 2D quantum gravity coupled to matter field with the central charge c = 1.

Keywords

Central Charge Matrix Model Strong Magnetic Field Edge State Conformal Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).CrossRefADSGoogle Scholar
  2. [2]
    M. L. Mehta, “ Random Matrices and the Statistical Theory of Energy Levels”, Academic Press 1967, New York.MATHGoogle Scholar
  3. [3]
    J. Ginibre, J. Math. Phys. 6, 440 (1965).CrossRefMATHADSMathSciNetGoogle Scholar
  4. [4]
    D. J. Callaway, Phys. Rev. B43 8641 (1991).ADSGoogle Scholar
  5. [5]
    I. Kogan, A. M. Perelomov and G. W. Semenoff, Phys. Rev. B45, 12084 (1992).Google Scholar
  6. [6]
    A. Cappelli, C. A. Trugenberger and G. R. Zemba, Phys. Lett. B306, 100 (1993).CrossRefGoogle Scholar
  7. [7]
    A. Cappelli, G. V. Dunne, C. A. Trugenberger and G. R. Zemba, Nucl. Phys. B398, 531 (1993).CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    X. G. Wen, Phys. Rev. B41, 12838 (1990).Google Scholar
  9. [9]
    M. Stone, “Quantum Hall Effect”, World Scientific, 1992, Singapore, and references therein.MATHGoogle Scholar
  10. [10]
    G. Cristofano, G. Maiella, R. Musto and F. Nicodemi, “Theoretical Aspects of Quantum Hall Effect and Two Dimensional CFT”, preprint 1991.Google Scholar
  11. [11]
    S. Iso, D. Karabali and B. Sakita, Nucl. Phys. B388, 700 (1992).CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    E. Brézin and A. Zee, Nucl. Phys. B402, 613 (1993).CrossRefMATHADSGoogle Scholar
  13. [13]
    S. Hikami, Phys. Rev. B29, 3726 (1984).ADSGoogle Scholar
  14. [14]
    E. Brézin, A. Fujita and S. Hikami, Phys. Rev. Lett. 65, 1949 (1990).CrossRefADSGoogle Scholar
  15. [15]
    T. R. Morris, Nucl. Phys. B356, 703 (1991).CrossRefADSGoogle Scholar
  16. [16]
    S. Hikami, Physica A in press, (preprint hep-th.9309005).Google Scholar
  17. [17]
    E. Brézin, C. Itzykson, G. Parisi and J. B. Zuber, Commun. Math. Phys. 59, 35 (1978).CrossRefMATHADSGoogle Scholar
  18. [18]
    D.H. Lee and X.G. Wen, Phys. Rev. Lett. 66, 1765 (1991).CrossRefADSGoogle Scholar
  19. [19]
    V. A. Kazakov, “ fields, strings and critical phenomena”, Les Houches 1988, edited by Brézin and J. Zinn-justin, P. 369. North-Holland, Amsterdam (1990).Google Scholar
  20. [20]
    S. Hikami and E. Brézin, J. Phys. Al2 759 (1979).Google Scholar
  21. [21]
    E. Brézin and S. Hikami, Phys. Lett. B283 203 (1992).CrossRefMathSciNetGoogle Scholar
  22. [22]
    S. Hikami and E. Brézin, Phys. Lett. B295 209 (1992).CrossRefGoogle Scholar
  23. [23]
    S. Hikami, Phys. Lett. B305 327 (1993).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • S. Hikami
    • 1
  1. 1.Department of Pure and Applied SciencesUniversity of TokyoMeguro-ku, Komaba, Tokyo 153Japan

Personalised recommendations