Skip to main content

Kinetic and Metabolic Disorders of Axoplasmic Transport Induced by Neurotoxic Agents

  • Chapter
Selective Neurotoxicity

Part of the book series: Springer Study Edition ((SSE,volume 102))

  • 100 Accesses

Abstract

Proteins and other materials synthesized in the cell bodies are transported into the axons and dendrites to support their functions: conduction of nerve impulses, release of neurotransmitters from terminals, and transduction in terminals. The structures of the axon continually turn over and are themselves maintained by transport: the cytoskeleton microtubules and neurofilaments, the membrane and its ion channels and pumps, endoplasmic reticulum, and other membrane-bound organelles (MBO) including transmitter vesicles, etc. It is apparent that toxicants affecting axonal transport can have profound effects on the function and structure of the neuron. A synopsis of transport properties and mechanisms is given in Sect. B to set the stage for the discussion of toxicants known to involve transport in Sect. C. The discussion is restricted for the most part to studies carried out in peripheral nerves taking a wider view of neurotoxicity, including the actions of toxicants on nerves in vitro as well as those following systemic administration. Transport is commonly held to consist of separate fast and slow mechanisms. Slow transport is associated with the maintenance of the cytoskeletal organelles. Their dramatic alteration by some key toxicants is usually accounted for by a selective action on the slow transport mechanism. In this presentation the alternate concept of a unitary mechanism for both slow and fast transport is advanced and neurotoxic actions discussed on that basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe T, Haga T, Kurokawa M (1973) Rapid transport of phosphatidylcholine occurring simultaneously with protein transport in the frog sciatic nerve. Biochem J 136:731–740

    PubMed  CAS  Google Scholar 

  • Abe T, Haga T, Kurokawa M (1975) Blockage of axoplasmic transport and depolymerisation of reassembled microtubules by methyl mercury. Brain Res 86:504–508

    PubMed  CAS  Google Scholar 

  • Adams RJ (1982) Organelle movement in axons depends on ATP. Nature 297:327–329

    PubMed  CAS  Google Scholar 

  • Albuquerque EX, Daly JW (1976) Batrachotoxin, a selective probe for channels modulating sodium conductances in electrogenic membranes. In: Cuatrecasas P (ed) The specificity and action of animal bacterial and plant toxins. Chapman and Hall, London, pp 297–338 (Receptors and recognition, series B, vol 1)

    Google Scholar 

  • Allen RD (1987) The microtubule as an intracellular engine. Sci Am 256:42–49

    PubMed  CAS  Google Scholar 

  • Allen RD, Travis JL, Hayden JH, Allen NS, Breuer AC, Lewis LJ (1982) Cytoplasmic transport: moving ultrastructural elements common to many cell types revealed by video-enhanced microscopy. Cold Spring Harbor Symp Quant Biol 46:85–87

    PubMed  Google Scholar 

  • Allen RD, Weiss DG, Hayden JH, Brown DT, Fujiwake H, Simpson M (1985) Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport. J Cell Biol 100:1736–1752

    PubMed  CAS  Google Scholar 

  • Asbury AK, Brown MJ (1980) The evolution of structural changes in distal axonopathies. In: Spencer PS, Schaumburg HH (eds) Neurotoxicology. Williams and Wilkins, Baltimore, pp 179–192

    Google Scholar 

  • Bamburg JR (1988) The axonal cytoskeleton: stationary or moving matrix? Trends Neurosci 11:248–249

    PubMed  CAS  Google Scholar 

  • Bamburg JR, Bray D, Chapman K (1986) Assembly of microtubules at the tip of growing axons. Nature 321:788–790

    PubMed  CAS  Google Scholar 

  • Banks P, Till R (1975) A correlation between the effects of anti-mitotic drugs on microtubule assembly in vitro and the inhibition of axonal transport in noradrenergic neurones. J Physiol (Lond) 252:283–294

    CAS  Google Scholar 

  • Berthold C-H (1982) Some aspects of the ultrastructural organization of peripheral myelinated axons in the cat. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 40–54

    Google Scholar 

  • Bigotte L, Olsson Y (1987) Degeneration of trigeminal ganglion neurons caused by retrograde axonal transport of doxorubicin. Neurology 37:985–992

    PubMed  CAS  Google Scholar 

  • Bisby MA (1975) Inhibition of axonal transport in nerves chronically treated with local anesthetics. Exp Neurol 47:481–489

    PubMed  CAS  Google Scholar 

  • Bisby MA (1980) Retrograde axonal transport. Adv Cell Neurobiol 1:69–117

    CAS  Google Scholar 

  • Bisby MA, Bulger VT (1977) Reversal of axonal transport at a nerve crush. J Neurochem 29:313–320

    PubMed  CAS  Google Scholar 

  • Bizzi A, Crane RC, Autilio-Gambetti L, Gambetti P (1984) Aluminum effect on slow axonal transport: a novel impairment of neurofilament transport. J Neurosci 4:722–731

    PubMed  CAS  Google Scholar 

  • Black MM, Lasek RJ (1980) Slow components of axonal transport: two cytoskeletal networks. J Cell Biol 86:616–623

    PubMed  CAS  Google Scholar 

  • Boegman RJ, Riopelle RJ (1980) Batrachotoxin blocks slow and retrograde axonal transport in vivo. Neurosci Lett 18:143–147

    PubMed  CAS  Google Scholar 

  • Bouldin T, Cavanagh J (1979a) Organophosphorous neuropathy I. A teased-fiber study of the spatio-temporal spread of axonal degeneration. Am J Pathol 94:241–252

    PubMed  CAS  Google Scholar 

  • Bouldin T, Cavanagh J (1979b) Organophosphorous neuropathy II. A fine-structural study of the early stages of axonal degeneration. Am J Pathol 94:253–270

    PubMed  CAS  Google Scholar 

  • Bradley WG, Williams MH (1973) Axoplasmic flow in axonal neuropathies I. Axoplasmic flow in cats with toxic neuropathies. Brain 96:235–246

    PubMed  CAS  Google Scholar 

  • Brady SIT, Chrothers SD, Nosal C, McClure WO (1980) Fast axonal transport in the presence of high Ca : evidence that microtubules are not required. Proc Natl Acad Sci USA 77:5909–5913

    PubMed  CAS  Google Scholar 

  • Brady ST, Lasek RJ, Allen RD (1982) Fast axonal transport in extruded axoplasm from squid giant axon. Science 218:1129–1131

    PubMed  CAS  Google Scholar 

  • Brandner MD, Buncke HJ, Campagna-Pinto D (1989) Experimental treatment of neuromas in the rat by retrograde axoplasmic transport of ricin with selective destruction of ganglion cells. J Hand Surg [Am] 14:710–714

    CAS  Google Scholar 

  • Bray JJ, Hubbard JI, Mills RG (1979) The trophic influence of tetrodotoxin-inactive nerves on normal and reinnervated rat skeletal muscles. J Physiol (Lond) 297:479–491

    CAS  Google Scholar 

  • Brimijoin S (1982) Axonal transport in autonomic nerves: views on its kinetics. In: Kalsner S (ed) Trends in autonomic pharmacology, vol 2. Urban and Schwarzenberg, Baltimore, pp 17–42

    Google Scholar 

  • Brimijoin S, Heiland L (1976) Rapid retrograde transport of dopamine-ß- hydroxylase as examined by the stop-flow technique. Brain Res 102:217–228

    PubMed  CAS  Google Scholar 

  • Brimijoin WS, Hammond PI (1985) Acrylamide neuropathy in the rat: effects on energy metabolism in sciatic nerve. Mayo Clin Proc 60:3–8

    PubMed  CAS  Google Scholar 

  • Bugiani O, Ghetti B (1982) Progressing encephalomyelopathy with muscular atrophy, induced by aluminum powder. Neurobiol Aging 3:209–222

    PubMed  CAS  Google Scholar 

  • Burton PR (1987) Microtubules of frog olfactory axons: their length and number/ axon. Brain Res 409:71–78

    PubMed  CAS  Google Scholar 

  • Byers MR, Fink BR, Kennedy RD, Middaugh ME, Hendrickson AE (1973) Effects of lidocaine on axonal morphology microtubules and rapid transport in rabbit vagus nerve in vitro. J Neurobiol 4:25–43

    Google Scholar 

  • Carafoli E, Crompton M (1976) Calcium ions and mitochondria. Symp Soc Exp Biol 30:89–115

    CAS  Google Scholar 

  • Carafoli E, Crompton M (1978) The regulation of intracellular calcium by mitochondria. Ann NY Acad Sci 307:269–284

    PubMed  CAS  Google Scholar 

  • Cavanagh J, Chen F, Kyu M, Ridley A (1968) The experimental neuropathy in rats caused by p-bromophenylacetylurea. J Neurol Neurosurg Psychiatry 31:471–478

    PubMed  CAS  Google Scholar 

  • Cavanagh JB (1964) The significance of the “dying back” process in experimental and human neurological disease. Int Rev Exp Pathol 3:219–267

    PubMed  CAS  Google Scholar 

  • Cavanagh JB (1985) Peripheral nervous system toxicity: a morphological approach. In: Blum K, Manzo L (eds) Neurotoxicology. Dekker, New York, pp 1–44

    Google Scholar 

  • Chalfie M, Thomson JN (1979) Organization of neuronal microtubules in the nematode Caenorhabditis elegans. J Cell Biol 82:278–289

    PubMed  CAS  Google Scholar 

  • Chan SY, Ochs S, Worth RM (1980a) The requirement for calcium ions and the effect of other ions on axoplasmic transport in mammalian nerve. J Physiol (Lond) 301:477–504

    CAS  Google Scholar 

  • Chan SY, Worth R, Ochs S (1980b) Block of axoplasmic transport in vitro by vinca alkaloids. J Neurobiol 11:251–264

    PubMed  CAS  Google Scholar 

  • Cho E, Schaumburg H, Spencer P (1977) Adriamycin produces ganglioradiculopathy in rats. J Neuropathol Exp Neurol 36:597

    Google Scholar 

  • Chou S-M, Hartmann HA (1965) Electron microscopy of focal neuroaxonal lesions produced by β,β′-iminodipropionitrile (IDPN) in rats. Acta Neuropathol (Berl) 4:590–603

    CAS  Google Scholar 

  • Clark AW, Griffin JW, Price DL (1980) The axonal pathology in chronic IDPN intoxication. J Neuropathol Exp Neurol 39:42–55

    PubMed  CAS  Google Scholar 

  • Cohn SA, Ingold AL, Scholey JM (1987) Correlation between the ATPase and microtubule translocating activities of sea urchin egg kinesin. Nature 328:160–163

    PubMed  CAS  Google Scholar 

  • Dahlström A (1968) Effect of colchicine on transport of amine storage granules in sympathetic nerves of rat. Eur J Pharmacol 5:111–113

    PubMed  Google Scholar 

  • Dahlström A (1986) Axonal transport of neurotransmitter organelles in adrenergic, cholinergic, and peptidergic neurons. In: Iqbal Z (ed) Axoplasmic transport. CRC Press, Boca Raton, pp 119–146

    Google Scholar 

  • Donoso JA, Illanes J-P, Samson F (1977) Dimethylsulfoxide action on fast axoplasmic transport and ultrastructure of vagal axons. Brain Res 20:287–301

    Google Scholar 

  • Dulak L, Crist RD (1974) Microtubule properties in dimethylsulfoxide. J Cell Biol 63:90–98

    Google Scholar 

  • Dustin P (1984) Microtubules, 2nd edn. Springer, Berlin Heidelberg New York, pp 1–482

    Google Scholar 

  • Dyck PJ, Thomas PK, Lambert EH, Bunge R (1984) Peripheral neuropathy, vol 1, 2nd edn. Saunders, Philadelphia, pp 1–1165

    Google Scholar 

  • Edström A, Hanson M (1973) Retrograde axonal transport of. proteins in vitro in frog sciatic nerves. Brain Res 6:311–320

    Google Scholar 

  • Edström A, Mattsson H (1975) Small amounts of zinc stimulate rapid axonal transport in vitro. Brain Res 86:162–167

    PubMed  Google Scholar 

  • Edström A, Mattsson H (1976) Inhibition and stimulation of rapid axonal transport in vitro by sulfhydryl blockers. Brain Res 108:381–395

    PubMed  Google Scholar 

  • Edström A, Hansson H-A, Norstrom A (1973) Inhibition of axonal transport in vitro in frog sciatic nerves by chlorpromazine and lidocaine. Z Zellforsch Mikrosk Anat 143:53–69

    PubMed  Google Scholar 

  • Ekström P, Kanje M, McLean WG (1987) The effects of trifluoperazine on fast and slow axonal transport in the rabbit vagus nerve. J Neurobiol 18:283–293

    PubMed  Google Scholar 

  • Erdmann G, Wiegand H, Wellhoner HH (1975) Intraaxonal and extraaxonal transport of 125I-tetanus toxin in early local tetanus. Naunyn-Schmiedebergs Arch Pharmacol 290:357–373

    PubMed  CAS  Google Scholar 

  • Esquerro E, Garcia AG, Sanchez-Garcia P (1980) The effects of the calcium ionophore A23187 on the axoplasmic transport of dopamine-ß-hydroxylase. Br J Pharmacol 70:375–381

    PubMed  CAS  Google Scholar 

  • Fahim MA, Lasek FJ, Brady ST, Hodge AJ (1985) AVEC-DIC and electron microscopic analyses of axonally transported particles in cold-blocked squid giant axons. J Neurocytol 14:689–704

    PubMed  CAS  Google Scholar 

  • Fink DJ, Purkiss D, Mata M (1986) Beta, beta′-Iminodipropionitrile impairs retrograde axonal transport. J Neurochem 47:1032–1038

    PubMed  CAS  Google Scholar 

  • Forman D (1982) Vanadate inhibits saltatory organelle movement in a permeabilized cell model. Exp Cell Res 141:139–147

    PubMed  CAS  Google Scholar 

  • Forman DS, Shain WG Jr (1981) Batrachotoxin blocks saltatory organelle movement in electrically excitable neuroblastoma cells. Brain Res 211:242–247

    PubMed  CAS  Google Scholar 

  • Forman D, Brown K, Livengood D (1983a) Fast axonal transport in permeabilized lobster giant axons is inhibited by vanadate. J Neurosci 3:1279–1288

    PubMed  CAS  Google Scholar 

  • Forman DS, Brown KJ, Promersberger ME (1983b) Selective inhibition of retrograde axonal transport by erythro-9 [3-(2-hydroxy-nonyl)] adenine. Brain Res 272:194–197

    PubMed  CAS  Google Scholar 

  • Gambetti P, Monaco S, Autilio-Gambetti L, Sayre LM (1986) Chemical neurotoxins accelerating axonal transport of neurofilaments. In: Clarkson TW, Sager PR, Syversen TLM (eds) The cytoskeleton: a target for toxic agents. Plenum, New York, pp 129–142

    Google Scholar 

  • Gan S-D, Fan M-M, He G-P (1986) The role of microtubules in axoplasmic transport in vivo. Brain Res 369:75–82

    PubMed  CAS  Google Scholar 

  • Gaziri LCJ, Ochs S (1983) Increased duration of axoplasmic transport in vitro with added glucose or ß-hydroxybutyrate. Soc Neurosci Abst 9:150

    Google Scholar 

  • Gelles J, Schnapp BJ, Sheetz MP (1988) Tracking kinesin-driven movements with nanometre-scale precision. Nature 331:450–453

    PubMed  CAS  Google Scholar 

  • Gerzon K (1980) Dimeric catharanthus alkaloids. In: Cassady JM, Douros JD (eds) Anticancer agents based on natural product models. Academic, New York, pp 271–317

    Google Scholar 

  • Gerzon K, Ochs S, Todd GC (1979) Polarity of vincristine (VCR), vindesine (VDS), and vinblastine (VLB) in relation to neurological effects. Proc Am Assoc Cancer Res Abstr 20:46

    Google Scholar 

  • Ghetti B, Ochs S (1978) On the relation between microtubule density and axoplasmic transport in nerves treated with maytansine. In: Canal N, Pozza G (eds) Peripheral neuropathies. Elsevier, Amsterdam, p 177

    Google Scholar 

  • Ghetti B, Alyea C, Norton J, Ochs S (1982) Effects of vinblastine on microtubule density in relation to axoplasmic transport. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York pp 322–327

    Google Scholar 

  • Gold BG, Griffin JW, Price DL (1985) Slow axonal transport in acrylamide neuropathy: different abnormalities produced by single-dose and continuous administration. J Neurosci 5:1755–1768

    PubMed  CAS  Google Scholar 

  • Grafstein B, Forman DS (1980) Intracellular transport in neurons. Physiol Rev 60:1167–1283

    PubMed  CAS  Google Scholar 

  • Griffin J, Watson D (1988) Axonal transport in neurological disease. Ann Neurol 23:3–13

    PubMed  CAS  Google Scholar 

  • Griffin J, Price D, Spencer P (1977) Fast axonal transport through giant axonal swellings in hexacarbon neuropathies. J Neuropathol Exp Neurol 36:603

    Google Scholar 

  • Griffin JW, Hoffman PN, Clark AW, Carroll PT, Price DL (1978) Slow axonal transport of neurofilament proteins: impairment by β,β′-iminodipropionitrile administration. Science 202:633–635

    PubMed  CAS  Google Scholar 

  • Griffin JW, Fahnestock KE, Price DL, Hoffman PN (1983) Microtubule- neurofilament segregation produced by beta, beta’-iminodipropionitrile: evidence for the association of fast axonal transport with microtubules. J Neurosci 3:557–566

    PubMed  CAS  Google Scholar 

  • Griffin JW, Anthony DC, Fahnestock KE, Hoffman PN, Graham DG (1984) 3,4- Dimethyl-2,5-hexanedione impairs the axonal transport of neurofilament proteins. J Neurosci 4:1516–1526

    PubMed  CAS  Google Scholar 

  • Gross GW, Beidler LM (1975) A quantitative analysis of isotope concentration profiles and rapid transport velocities in the C-fibers of the garfish olfactory nerve. J Neurobiol 6:213–232

    PubMed  CAS  Google Scholar 

  • Hammerschlag R, Brady ST (1989) Axonal transport and the neuronal cytoskeleton. In: Siegel G, Agranoff B, Albers RW, Molinoff P (eds) Basic neurochemistry, 4th edn. Raven, New York, pp 457–478

    Google Scholar 

  • Hammerschlag R, Stone GC (1986) Prelude to fast axonal transport: sequence of events in the cell body. In: Iqbal Z (ed) Axoplasmic transport. CRC Press, Boca Raton, pp 21–34

    Google Scholar 

  • Hammond GR, Smith RS (1977) Inhibition of the rapid movement of optically detectable axonal particles by colchicine and vinblastine. Brain Res 128:227–242

    PubMed  CAS  Google Scholar 

  • Hanson M, Edström A (1978) Mitosis inhibitors and axonal transport. Int Rev Cytol [Suppl]7:373–402

    CAS  Google Scholar 

  • Harry GJ, Goodrum JF, Bouldin TW, Toews AD, Morell P (1989) Acrylamide- induced increases in deposition of axonally transported glycoproteins in rat sciatic nerve. J Neurochem 52:1240–1247

    PubMed  CAS  Google Scholar 

  • Heath J, Ueda S, Bornstein M, Daves G, Raine C (1982) Buckthorn neuropathy in vitro: evidence for a primary neuronal effect. J Neuropathol Exp Neurol 2:204–220

    Google Scholar 

  • Heidemann SR, McIntosh JR (1980) Visualization of the structural polarity of microtubules. Nature 286:517–519

    PubMed  CAS  Google Scholar 

  • Hoffman PN, Lasek RJ (1975) The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol 66:351–366

    PubMed  CAS  Google Scholar 

  • Horie H, Takenaka T, Inomata K (1981) Effects of antimitotic drugs on axoplasmic transport in tissue cultured nerve cells. Soc Neurosci Abstr 7:485

    Google Scholar 

  • Horie H, Takenaka T, Ito S, Kim U (1987) Taxol counteracts colchicine blockade of axonal transport in neurites of cultured dorsal root ganglion cells. Brain Res 420:144–146

    PubMed  CAS  Google Scholar 

  • Horwitz S, Lothstein L, Manfredi J, Mellado W, Parness J, Roy S, Schiff P, Sorbara L, Zeheb R (1986) Taxol: mechanisms of actioh and resistance. Ann NY Acad Sci 466:733–744

    PubMed  CAS  Google Scholar 

  • Inoue S, Sato H (1967) Cell mobility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol 50:259–292

    PubMed  CAS  Google Scholar 

  • Iqbal Z (1986) Calmodulin and its role in axoplasmic transport. In: Iqbal Z (ed) Axoplasmic transport. CRC Press, Boca Raton, pp 45–55

    Google Scholar 

  • Iqbal Z, Ochs S (1980a) Calmodulin in mammalian nerve. J Neurobiol 11:311–318

    PubMed  CAS  Google Scholar 

  • Iqbal Z, Ochs S (1980b) Uptake of vinca alkaloids into mammalian nerve and its subcellular components. J Neurochem 34:59–68

    PubMed  CAS  Google Scholar 

  • Jakobsen J, Sidenius P (1979) Decreased axonal flux of retrogradely transported glycoproteins in early experimental diabetes. J Neurochem 33:1055–1060

    PubMed  CAS  Google Scholar 

  • Jakobsen J, Brimijoin S (1981) Axonal transport of enzymes and labeled proteins in experimental neuropathy induced by p-bromophenylacetylurea. Brain Res 229:103–122

    PubMed  CAS  Google Scholar 

  • Jakobsen J, Sidenius P (1983) Early and dose-dependent decrease of retrograde axonal transport in acrylamide-intoxicated rats. J Neurochem 40:447–454

    PubMed  CAS  Google Scholar 

  • Jakobsen J, Brimijoin S, Skau K, Sidenius P (1981) Retrograde axonal transport of transmitter enzymes, fucose labelled proteins and nerve growth factor in streptozotocin-diabetic rats. Diabetes 30:797–803

    PubMed  CAS  Google Scholar 

  • Jakobsen J, Brimijoin S, Sidenius P (1983) Axonal transport in neuropathy. Muscle Nerve 6:164–166

    PubMed  CAS  Google Scholar 

  • James KAC, Austin L (1970) The effect of DFP on axonal transport of protein in chicken sciatic nerve. Brain Res 18:192–194

    PubMed  CAS  Google Scholar 

  • Johnson M (1975) Organophosphorus esters causing delayed neurotoxic effects. Arch Toxicol 34:259–288

    PubMed  CAS  Google Scholar 

  • Kanje M (1986) Ionic requirements for fast axonal transport. In: Iqbal Z (ed) Axoplasmic transport. CRC Press, Boca Raton pp 35–43

    Google Scholar 

  • Kanje M, Edström A, Hanson M (1981) Inhibition of rapid axonal transport in vitro by the ionophores X-537 A and A 23187. Brain Res 204:43–50

    PubMed  CAS  Google Scholar 

  • Kanje M, Edström A, Edstrom P (1982) Divalent cations and fast axonal transport in chemically desheathed (Triton X-treated) frog sciatic nerve. Brain 241:67–74

    CAS  Google Scholar 

  • Kanje M, Deinum J, Wallin M, Ekström P, Edström A, Hartley-Asp B (1985) Effect of estramustine phosphate on the assembly of isolated bovine brain microtubules and fast axonal transport in the frog sciatic nerve. Cancer Res 45:2234–2239

    PubMed  CAS  Google Scholar 

  • Kanje M, Ekström P, Deinum J, Wallin M (1986) The effect of gossypol on fast axonal transport and microtubule assembly. Biochim Biophys Acta 856: 437–442

    PubMed  CAS  Google Scholar 

  • Karlsson J-O, Sjöstrand J (1971) Synthesis migration and turnover of protein in retinal ganglion cells. J Neurochem 18:749–767

    PubMed  CAS  Google Scholar 

  • Kato S, Yamamoto S, Iwasaki Y, Niizuma H, Nakamura T, Suzuki J (1988) Experimental retrograde adriamycin trigeminal sensory ganglionectomy. J Neurosurg 69:760–765

    PubMed  CAS  Google Scholar 

  • Klatzo I, Wisniewski H, Streicher E (1965) Experimental production of neurofibrillary degeneration. I. Light microscopic observations. J Neuropathol Exp Neurol 24:187–199

    PubMed  CAS  Google Scholar 

  • Knyihár-Csillik E, Szücs A, Csillik B (1982) Iontophoretically applied microtubule inhibitors induce transganglionic degenerative atrophy of primary central nociceptive terminals and abolish chronic autochthonous pain. Acta Neurol Scand 66:401–412

    PubMed  Google Scholar 

  • Kreutzberg GW (1969) Neuronal dynamics and axonal flow IV. Blockage of intra- axonal enzyme transport by colchicine. Proc Natl Acad Sci USA 62:722–728

    PubMed  CAS  Google Scholar 

  • Kristensson K (1978) Retrograde transport of macromolecules in axons. Annu Rev Pharmacol Toxicol 18:97–110

    PubMed  CAS  Google Scholar 

  • Kristensson K, Lycke E, Sjöstrand J (1971) Spread of herpes simplex virus in peripheral nerves. Acta Neuropathol (Berl) 19:44–53

    Google Scholar 

  • Lariviere L, Lavoie P-A (1982) Calcium requirement for fast axonal transport in frog motoneurons. J Neurochem 39:882–886

    PubMed  CAS  Google Scholar 

  • Lasek RJ (1967) Bidirectional transport of radioactively labelled axoplasmic components. Nature 216:1212–1214

    PubMed  CAS  Google Scholar 

  • Lasek RJ, Hoffman PN (1976) The neuronal cytoskeleton, axonal transport and axonal growth. In: Goldman R, Pollard T, Rosenbaum J (eds) Cell motility (book C). Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 1021–1049

    Google Scholar 

  • Lasek RJ, Katz MJ (1987) Mechanisms at the axon tip regulate metabolic processes critical to axonal elongation. Prog Brain Res 71:49–60

    PubMed  CAS  Google Scholar 

  • Lasek RJ, Garner JA, Brady ST (1984) Axonal transport of the cytoplasmic matrix. J Cell Biol 99:212–221

    CAS  Google Scholar 

  • Lavoie P-A (1982) Inhibition of fast axonal transport in vitro by tetracaine: an increase in potency at alkaline pH and no change in potency in calcium-depleted nerves. Can J Physiol Pharmacol 60:1715–1720

    PubMed  CAS  Google Scholar 

  • Lavoie P-A, Tiberi M (1986) Inhibition of fast axonal transport in bullfrog nerves by dibenzazepine and dibenzocycloheptadiene calmodulin inhibitors. J Neurobiol 17:681–695

    PubMed  CAS  Google Scholar 

  • Lavoie P-A, Collier B, Tenenhouse A (1976) Comparison of alpha-bungarotoxin binding to skeletal muscles after inactivity or denervation. Nature 260:349–350

    PubMed  CAS  Google Scholar 

  • Lavoie P-A, Bolen F, Hammerschlag R (1979) Divalent cation specificity of the calcium requirement for fast transport of proteins in axons of desheathed nerves. J Neurochem 32:1745–1751

    PubMed  CAS  Google Scholar 

  • Lavoie P-A, Khazen T, Filion PR (1989) Mechanisms of the inhibition of fast axonal transport by local anesthetics. Neuropharmacology 28:175–181

    PubMed  CAS  Google Scholar 

  • Lees GJ (1985) Inhibition of the retrograde axonal transport of dopamine- beta-hydroxylase antibodies by the calcium ionophore A23187. Brain Res 345:62–67

    PubMed  CAS  Google Scholar 

  • Leone J, Ochs S (1978) Anoxic block and recovery of axoplasmic transport and electrical excitability of nerve. J Neurobiol 9:229–245

    PubMed  CAS  Google Scholar 

  • Levi-Montalcini R (1976) The nerve growth factor: its role in growth differentiation and function of the sympathetic adrenergic neuron. Prog Brain Res 45:235–258

    PubMed  CAS  Google Scholar 

  • Lim S-S, Sammak PJ, Borisy GG (1989) Progressive and spatially differentiated stability of microtubules in developing neuronal cells. J Cell Biol 109:253–263

    PubMed  CAS  Google Scholar 

  • Lim S-S, Edson KJ, Letourneau PC, Borisy GG (1990) A test of microtubule translocation during neurite elongation. J Cell Biol 111:123–130

    PubMed  CAS  Google Scholar 

  • Liwnicz BH, Kristensson K, Wisniewski HM, Shelanski ML, Terry RD (1974) Observations on axoplasmic transport in rabbits with aluminum-induced neurofibrillary tangles. Brain Res 80:413–420

    PubMed  CAS  Google Scholar 

  • Macioce P, Filliatreau G, Figliomeni B, Hassig R, Thiery J, Di Giamberardino L (1989) Slow axonal transport impairment of cytoskeletal proteins in streptozocin-induced diabetic neuropathy. J Neurochem 53:1261–1267

    PubMed  CAS  Google Scholar 

  • McEwen BS, Grafstein B (1968) Fast and slow components in axonal transport of protein. J Cell Biol 38:494–508

    PubMed  CAS  Google Scholar 

  • McLane JA (1987) Decreased axonal transport in rat nerve following acute and chronic ethanol exposure. Alcohol 4:385–389

    PubMed  CAS  Google Scholar 

  • McLane JA (1990) Retrograde axonal transport in chronic ethanol-fed and thiamine- deficient rats. Alcohol 7:103–106

    PubMed  CAS  Google Scholar 

  • Mellon M, Rhebun L, Rosenbaum J (1976) Studies on the accessible sulfhydryls of polymerizable tubulin. In: Goldman R, Pollard T, Rosenbaum J (eds) Cell motility (book C). Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 1149–1163

    Google Scholar 

  • Mendell JR, Sahenk Z (1980) Interference of neuronal processing and axoplasmic transport by toxic chemicals. In: Spencer PS, Schaumburg HH (eds) Neurotoxicology. Williams and Wilkins, Baltimore, pp 139–160

    Google Scholar 

  • Mendell JR, Sahenk Z, Saida K, Weiss HS, Savage R, Couri D (1977) Alterations of fast axoplasmic transport in experimental methyl n-butyl ketone neuropathy. Brain Res 133:107–118

    PubMed  CAS  Google Scholar 

  • Mildvan AS (1970) Metals in enzyme catalsis vol II. In: Boyer PD (ed) The enzymes, 3rd edn. Academic, New York, pp 445–536

    Google Scholar 

  • Miller MS, Spencer PS (1984) Single doses of acrylamide reduce retrograde transport velocity. J Neurochem 43:1401–1408

    PubMed  CAS  Google Scholar 

  • Miller MS, Spencer PS (1985) The mechanisms of acrylamide axonopathy. Annu Rev Pharmacol Toxicol 25:643–666

    PubMed  CAS  Google Scholar 

  • Mobley WC, Sever AC, Ishii DN, Riopelle RJ, Shooter EM (1977) Nerve growth factor. N Engl J Med 297:1096–1104

    PubMed  CAS  Google Scholar 

  • Monaco S, Jacob J, Jenich H, Patton A, Autilio-Gambetti L, Gambetti P (1989) Axonal transport of neurofilament is accelerated in peripheral nerve during 2,5-hexanedione intoxication. Brain Res 491:328–334

    PubMed  CAS  Google Scholar 

  • Moretto A, Sabri MI (1988) Progressive deficits in retrograde axon transport precede degeneration of motor axons in acrylamide neuropathy. Brain Res 440: 18–24

    PubMed  CAS  Google Scholar 

  • Moretto A, Lotti M, Sabri MI, Spencer PS (1987) Progressive deficit of retrograde axonal transport is associated with the pathogenesis of di-n-butyl dichlorvos axonopathy. J Neurochem 49:1515–1522

    PubMed  CAS  Google Scholar 

  • Mori H, Komiya Y, Kurokawa M (1979) Slowly migrating axonal polypeptides. Inequalities in their rate and amount of transport between two branches of bifurcating axons. J Cell Biol 82:74–84

    Google Scholar 

  • Muñoz-Martínez EJ (1982) Axonal retention of transported material and the lability of nerve terminals. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 267–274

    Google Scholar 

  • Muñoz-Martínez EJ, Núñez R, Sanderson A (1981) Axonal transport: a quantitative study of retained and transported protein fraction in the cat. J Neurobiol 12:15–26

    PubMed  Google Scholar 

  • Muñoz-Martínez EJ, Massieu D, Ochs S (1984) Depression of fast axonal transport produced by Tullidora. J Neurobiol 15:375–392

    PubMed  Google Scholar 

  • Narahashi T, Albuquerque EX, Deguchi T (1971) Effects of batrachotoxin on membrane potential and conductance of squid giant axons. J Gen Physiol 58:54–70

    PubMed  CAS  Google Scholar 

  • Nennesmo I, Kristensson K (1986) Effects of retrograde axonal transport of Ricinus communis agglutinin I on neuroma formation. Acta Neuropathol (Berl) 70:279–283

    CAS  Google Scholar 

  • Nichols TR, Smith RS, Snyder RE (1982) The action of puromycin and cycloheximide on the initiation of rapid axonal transport in amphibian dorsal root neurones. J Physiol (Lond) 332:441–458

    CAS  Google Scholar 

  • Nixon RA (1991) Axonal transport of cytoskeletal proteins. In: Burgoyne, R (ed) The Neuronal Cytoskeleton, Wiley-Liss, New York, pp 283–307

    Google Scholar 

  • Nixon R, Logvinenko KB (1985) Multiple fates of newly synthesized neurofilament proteins: evidence for a stationary neurofilament network distributed nonuniformly along axons of retinal ganglion cell neurons. J Cell Biol 102:647–658

    Google Scholar 

  • Nixon RA, Fischer I, Lewis SE (1990) Synthesis, axonal transport and turnover of the high molecular weight microtubule associated protein MAP 1A in mouse retinal ganglion cells: tubulin and MAP 1A display distinct transport kinetics J Cell Biol 110:437–448.

    PubMed  CAS  Google Scholar 

  • Ochs S (1971) Characteristics and a model for fast axoplasmic transport in nerve. J Neurobiol 2:331–345

    PubMed  CAS  Google Scholar 

  • Ochs S (1972) Rate of fast axoplasmic transport in mammalian nerve fibres. J Physiol (Lond) 227: 627–645

    CAS  Google Scholar 

  • Ochs S (1974a) Retention and redistribution of fast and slow axoplasmic transported proteins in mammalian nerve. 3rd international congress on muscle disease. Abstr Excerpta Med Int Congr Ser 334:26

    Google Scholar 

  • Ochs S (1974b) Energy metabolism and supply of ~ P to the fast axoplasmic transport mechanism in nerve. Fed Proc 33:1049–1058

    CAS  Google Scholar 

  • Ochs S (1974c) Systems of material transport in nerve fibers (axoplasmic transport) related to nerve function and trophic control. Ann NY Acad Sci 228:202–223

    PubMed  CAS  Google Scholar 

  • Ochs S (1975) Retention and redistribution of proteins in mammalian nerve fibres by axoplasmic transport. J Physiol (Lond) 253:459–475

    CAS  Google Scholar 

  • Ochs S (1980) Calcium requirement for axoplasmic transport and the role of the perineurial sheath. In: Jewett DL, McCarroll HR Jr (eds) Nerve repair and regeneration. Mosby, St Louis, pp 77–88

    Google Scholar 

  • Ochs S (1982) Axoplasmic transport and its relation to other nerve functions, 1st edn. Wiley-Interscience, New York, pp 1–462

    Google Scholar 

  • Ochs S, Hollingsworth D (1971) Dependence of fast axoplasmic transport in nerve on oxidative metabolism. J Neurochem 18:107–114

    PubMed  CAS  Google Scholar 

  • Ochs S, Iqbal Z (1983) The role of calcium in axoplasmic transport in nerve. In: Cheung WY (ed) Calcium and cell function, vol 3. Academic, New York, pp 325–354

    Google Scholar 

  • Ochs S, Jersild RA Jr (1974) Fast axoplasmic transport in nonmyelinated mammalian nerve fibers shown by electron microscopic radioautography. J Neurobiol 5:373–377

    PubMed  CAS  Google Scholar 

  • Ochs S, Jersild RA Jr (1985) Beading of nerve fibers and fast axoplasmic transport. Soc Neurosci Abstr 11:1135

    Google Scholar 

  • Ochs S, Jersild RA Jr (1987) Cytoskeletal organelles and myelin structure of beaded nerve fibers. Neuroscience 22:1041–1056

    PubMed  CAS  Google Scholar 

  • Ochs S, Smith CB (1971) Fast axoplasmic transport in mammalian nerve in vitro after block of glycolysis with iodoacetic acid. J Neurochem 8:833–843

    Google Scholar 

  • Ochs S, Worth R (1975) Batrachotoxin block of fast axoplasmic transport in mammalian nerve fibers. Science 87:87–89

    Google Scholar 

  • Ochs S, Johnson J, Ng M-H (1967) Protein incorporation and axoplasmic flow in motoneuron fibres following intra-cord injection of labeled leucine. J Neurochem 4:3–7

    Google Scholar 

  • Ochs S, Sabri MI, Ranish N (1970) Somal site of synthesis of fast transported materials in mammalian nerve fibers. J Neurobiol 1:329–344

    CAS  Google Scholar 

  • Ochs S, Jersild RA, Jr Li J-M (1989) Slow transport of freely movable cytoskeletal components shown by beading partition of nerve fibers. Neuroscience 33:421–430

    PubMed  CAS  Google Scholar 

  • Oka N, Brimijoin S (1990) Premature onset of fast axonal transport in bromophenylacetylurea neuropathy: an electrophoretic analysis of proteins exported into motor nerve. Brain Res 509:107–110

    PubMed  CAS  Google Scholar 

  • Okabe S, Hirokawa N (1988) Microtubule dynamics in nerve cells: Analysis using microinjection of biotinylated tubulin into PC12 cells. J Cell Biol 107:651–664

    PubMed  CAS  Google Scholar 

  • Okabe S, Hirokawa N (1990) Turnover of fluorescently labelled tubulin and actin in the axon. Nature 343:479–482

    PubMed  CAS  Google Scholar 

  • Papasozomenos SC (1986) Reorganization of axonal cytoskeleton following b,b’- iminodipropionitrile (IDPN) intoxication. In: Clarkson TW, Sager PR, Syversen TLM (eds) The cytoskeleton - a target for toxic agents. Plenum, New York, pp 67–82

    Google Scholar 

  • Papasozomenos SC, Autilio-Gambetti L, Gambetti P (1981) Reorganization of axoplasmic organelles following β,β′-iminodipropionitrile administration. J Cell Biol 91:866–871

    PubMed  CAS  Google Scholar 

  • Papasozomenos SC, Autilio-Gambetti L, Gambetti P (1982a) The IDPN axon: rearrangement of axonal cytoskeleton and organelles following β,β′- iminodipropionitrile (IDPN) intoxication. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 241–250

    Google Scholar 

  • Papasozomenos SC, Yoon M, Crane R, Autilio-Gambetti L, Gambetti P (1982b) Redistribution of proteins of fast axonal transport following administration of β,β′-iminodipropionitrile: a quantitative autoradiographic study. J Cell Biol 95:672–675

    PubMed  CAS  Google Scholar 

  • Pappolla M, Penton R, Weiss HS, Miller CH Jr, Sahenk Z, Autilio-Gambetti L, Gambetti L (1987) Carbon disulfide axonopathy. Another experimental model characterized by acceleration of neurofilament transport and distinct changes of axonal size. Brain Res 424:272–280

    PubMed  CAS  Google Scholar 

  • Paulson JC, McClure WO (1975) Inhibition of axoplasmic transport by colchicine, podophyllotoxin and vinblastine: an effect on microtubules. Ann NY Acad Sci 253:517–527

    PubMed  CAS  Google Scholar 

  • Pestronk A, Drachman DB, Griffin JW (1976) Effect of muscle disuse on acetylcholine receptors. Nature 260:352–353

    PubMed  CAS  Google Scholar 

  • Pleasure DE, Mishler KC, Engle WK (1969) Axonal transport of proteins in experimental neuropathies. Science 66:524–525

    Google Scholar 

  • Price DL, Griffin J, Young A, Peck K, Stocks A (1975) Tetanus toxin: direct evidence for retrograde intraaxonal transport. Science 88:945–947

    Google Scholar 

  • Reese TS (1987) The molecular basis of axonal transport in the squid giant axon. In: Kandel ER (ed) Molecular neurobiology in neurology and psychiatry. Raven Press, New York, pp 89–102

    Google Scholar 

  • Roots BI (1983) Neurofilament accumulation induced in synapses by leupeptin. Science 221:971–972

    PubMed  CAS  Google Scholar 

  • Roytta M, Raine C (1985) Taxol-induced neuropathy: further ultrastructural studies of nerve fibre changes in situ. J Neurocytol 14:157–175

    PubMed  CAS  Google Scholar 

  • Rubinow SI, Blum JJ (1980) A theoretical approach to the analysis of axonal transport. Biophys J 30:137–148

    PubMed  CAS  Google Scholar 

  • Sabri MI, Ochs S (1971) Inhibition of glyceraldehyde-3-phosphate dehydrogenase in mammalian nerve by iodoacetic acid. J Neurochem 8:1509–1514

    Google Scholar 

  • Sabri MI, Ochs S (1972) Relation of ATP and creatine phosphate to fast axoplasmic transport in mammalian nerve. J Neurochem 9:2821–2828

    Google Scholar 

  • Sabri MI, Spencer PS (1990) Acrylamide impairs fast and slow axonal transport in rat optic system. Neurochem Res 15:603–608

    PubMed  CAS  Google Scholar 

  • Sabri M, Dairman W, Fenton M, Juhasz L, Ng T, Spencer P (1989) Effect of exogenous pyruvate on acrylamide neuropathy in rats. Brain Res 483:1–11

    PubMed  CAS  Google Scholar 

  • Sahenk Z, Lasek RJ (1988) Inhibition of proteolysis blocks anterograde-retrograde conversion of axonally transported vesicles. Brain Res 460:199–203

    PubMed  CAS  Google Scholar 

  • Sahenk Z, Mendell J (1979a) Ultrastructural study of zinc pyridinethione-induced peripheral neuropathy. J Neuropathol Exp Neurol 58:532–550

    Google Scholar 

  • Sahenk Z, Mendell JR (1979b) Analysis of fast axoplasmic transport in nerve ligation and adriamycin-induced neuronal perikaryon lesions. Brain Res 171:41–53

    PubMed  CAS  Google Scholar 

  • Sahenk Z, Mendell JR (1980) Axoplasmic transport in zinc pyridinethione neuropathy: evidence for an abnormality in distal turn-around. Brain Res 186:343–353

    PubMed  CAS  Google Scholar 

  • Sahenk Z, Mendell JR (1981) Acrylamide and 2,5-hexanedione neuropathies: abnormal bidirectional transport rate in distal axons. Brain Res 219:397–405

    PubMed  CAS  Google Scholar 

  • Sammak PJ, Borisy GG (1988) Direct observation of microtubule dynamics in living cells. Nature 332:724–726

    PubMed  CAS  Google Scholar 

  • Sammak PJ, Gorbsky GJ, Borisy GG (1987) Microtubule dynamics in vivo: a test of mechanisms of turnover. J Cell Biol 104:395–405

    PubMed  CAS  Google Scholar 

  • Schlaepfer WW (1974) Calcium-induced degeneration of axoplasm in isolated segments of rat peripheral nerve. Brain Res 69:203–215

    PubMed  CAS  Google Scholar 

  • Schlaepfer WW, Hasler MB (1979) Characterization of the calcium-induced disruption of neurofilaments in rat peripheral nerves. Brain Res 68:299–309

    Google Scholar 

  • Schmidt RE, Grabau GG, Yip HK (1986) Retrograde axonal transport of [125I] nerve growth factor in ileal mesenteric nerves in vitro: effect of streptozotocin diabetes. Brain Res 378:325–336

    PubMed  CAS  Google Scholar 

  • Schwab ME, Thoenen H (1978) Selective binding, uptake and retrograde transport of tetanus toxin by nerve terminals in the rat iris. J Cell Biol 77:1–13

    PubMed  CAS  Google Scholar 

  • Schwab ME, Agid Y Glowinski J, Thoenen H (1977) Retrograde axonal transport of 125I-tetanus toxin as a tool for tracing fiber connections in the central nervous system: connections of the rostral part of the rat neostriatum. Brain Res 126:211–224

    PubMed  CAS  Google Scholar 

  • Schwab ME, Heumann R, Thoenen H (1982) Communication between target organs and nerve cells: retrograde axonal transport and site of action of nerve growth factor. Cold Spring Harbor Symp Quant Biol 46:125–134

    PubMed  Google Scholar 

  • Sheetz MP, Steuer ER, Schroer TA (1989) The mechanism and regulation of fast axonal transport. Trends Neurosci 12:474–478

    PubMed  CAS  Google Scholar 

  • Shpetner HS, Paschal BM, Vallee RB (1988) Characterization of the microtubule- activated ATPase of brain cytoplasmic dynein (MAP 1C). J Cell Biol 107:1001–1009

    PubMed  CAS  Google Scholar 

  • Sickles DW (1989a) Toxic neurofilamentous axonopathies and fast anterograde axonal transport. I. The effects of single doses of acrylamide on the rate and capacity of transport. Neurotoxicology 10:91–102

    PubMed  CAS  Google Scholar 

  • Sickles DW (1989b) Toxic neurofilamentous axonopathies and fast anterograde axonal transport. II. The effects of single doses of neurotoxic and nonneurotoxic diketones and beta, beta′-iminodipropionitrile (IDPN) on the rate and capacity of transport. Neurotoxicology 10:103–111

    PubMed  CAS  Google Scholar 

  • Sidenius P (1982) The axonopathy of diabetic neuropathy. Diabetes 31:356–363

    PubMed  CAS  Google Scholar 

  • Sidenius P, Jakobsen J (1983) Anterograde axonal transport in rats during intoxication with acrylamide. J Neurochem 40:697–704

    PubMed  CAS  Google Scholar 

  • Sidenius P, Jakobsen J (1987) Axonal transport in human and experimental diabetes. In: Dyck PJ, Thomas PK, Asbury AK, Winegrade AI, Porte D Jr (eds) Diabetic neuropathy. Saunders, Philadelphia, pp 260–265

    Google Scholar 

  • Sjöstrand J, Karlsson J-O (1969) Axoplasmic transport in the optic nerve and tract of the rabbit: a biochemical and radioautographic study. J Neurochem 6:833–844

    Google Scholar 

  • Smith FP, Kato S, Yamamoto T, Iwasaki Y (1989) Retrograde transport of adriamycin. J Neurosurg 70:819–820 (abstract)

    PubMed  CAS  Google Scholar 

  • Smith RS (1980) The short term accumulation of axonally transported organelles in the region of localized lesions of single myelinated axons. J Neurocytol 9:39–65

    PubMed  CAS  Google Scholar 

  • Smith RS (1982) Axonal transport of optically detectable particulate organelles. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 181–192

    Google Scholar 

  • Smith RS, Snyder RE (1991) Reversal of rapid axonal transport at a lesion: leu-peptin inhibits reversed protein transport, but does not inhibit reversed organelle transport. Brain Res 552:215–227

    PubMed  CAS  Google Scholar 

  • Snyder RE (1986) The kinematics of turnaround and retrograde axonal transport. J Neurobiol 17:637–647

    PubMed  CAS  Google Scholar 

  • Spencer PS, Schaumburg HH (1980) Experimental and clinical neurotoxicology, 1st edn. Williams and Wilkins, Baltimore, pp 1–929

    Google Scholar 

  • Spencer PS, Sabri MI, Schaumburg HH, Moore CL (1979) Does a defect of energy metabolism in the nerve fiber underlie axonal degeneration in polyneuropathies? Ann Neurol 5:501–507

    PubMed  CAS  Google Scholar 

  • Spencer PS, Couri D, Schaumburg HH (1980) n-Hexane and methyl-n-butyl ketone. In: Spencer PS, Schaumburg HH (eds) Experimental and clinical neurotoxicology. Williams and Wilkins, Baltimore, pp 456–475

    Google Scholar 

  • Takenaka T, Gotoh H (1984) Simulation of axoplasmic transport. J Theor Biol 107:579–601

    PubMed  CAS  Google Scholar 

  • Takenaka T, Inomata K, Horie H (1982) Slow axoplasmic transport of labeled protein in sciatic nerves of streptozotocin-diabetic rats and methylcobalamin treated rats. In: Goto Y, Horiuchi A, Kogure K (eds) Diabetic neuropathy. Excerpta Medica, Amsterdam, pp 99–103

    Google Scholar 

  • Tashiro T, Komiya Y (1987) Organization of cytoskeletal proteins transported in the axon. In: Smith RS, Bisby MA (eds) Axonal transport. Liss, New York, pp 201–221

    Google Scholar 

  • Tiberi M, Lavoie P-A (1985) Inhibition of the retrograde axonal transport of acetylcholinesterase by the anti-calmodulin agents amitriptyline and desipramine. J Neurobiol 16:245–248

    PubMed  CAS  Google Scholar 

  • Triarhou LC, Norton J, Bugiani O, Ghetti B (1985) Ventral root axonopathy and its relation to the neurofibrillary degeneration of lower motor neurons in aluminum-induced encephalomyelopathy. Neuropathol Appl Neurobiol 11:407–430

    PubMed  CAS  Google Scholar 

  • Tsukita S, Ishikawa H (1980) The movement of membranous organelles in axons. Electron microscopic identification of anterogradely and retrogradely transported organelles. J Cell Biol 84:513–530

    PubMed  CAS  Google Scholar 

  • Vale RD (1987) Intracellular transport using microtubule-based motors. Annu Rev Biol 3:347–378

    CAS  Google Scholar 

  • Vale RD, Schnapp BJ, Mitchison T, Steuer E, Reese TS, Sheetz MP (1985) Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell 43:623–632

    PubMed  CAS  Google Scholar 

  • Vallee RB, Shpetner HS, Paschal BM (1989) The role of dynein in retrograde axonal transport Trends Neurosci 12:66–70

    PubMed  CAS  Google Scholar 

  • Watson DF, Hoffman PN, Fittro KP, Griffin JW (1989) Neurofilament and tubulin transport slows along the course of mature motor axons. Brain Res 477:225–232

    PubMed  CAS  Google Scholar 

  • Weiss HD, Walker MD, Wiernik PH (1974) Neurotoxicity of commonly used antineoplastic agents. N Engl J Med 291:127–133

    PubMed  CAS  Google Scholar 

  • Weiss P, Hiscoe HB (1948) Experiments on the mechanism of nerve growth. J Exp Zool 107:315–395

    PubMed  CAS  Google Scholar 

  • Weller RO, Mitchell J, Daves GD Jr (1980) Buckthorn (Karwinskia humboldtiand) toxins. In: Spencer PS Schaumburg HH (eds) Experimental and clinical neurotoxicity, vol 1. Williams and Wilkins, Baltimore, pp 336–347

    Google Scholar 

  • Wiley RG, Stirpe F (1988) Modeccin and volkensin but not abrin are effective suicide transport agents in rat CNS. Brain Res 438:145–154

    PubMed  CAS  Google Scholar 

  • Wiley RG, Blessing WW, Reis DJ (1982) Suicide transport: destruction of neurons by retrograde transport of ricin, abrin and modeccin. Science 216:889–890

    PubMed  CAS  Google Scholar 

  • Willard MB, Hulebak KL (1977) The intra-axonal transport of polypeptide H: evidence for a fifth (very slow) group of transported proteins in the retinal ganglion cells of the rabbit. Brain Res 36:289–306

    Google Scholar 

  • Willard M, Cowan WM, Vagelos PR (1974) The polypeptide composition of intra- axonally transported proteins: evidence for four transport velocities. Proc Natl Acad Sci USA 71:2183–2187

    PubMed  CAS  Google Scholar 

  • Wisniewski HM, Sturman JA, Shek JW (1979) Aluminum chloride induced neurofibrillary changes in the developing rabbit: a chronic animal model. Ann Neurol 8:479–490

    Google Scholar 

  • Worth RM, Ochs S (1982) Dependence of batrachotoxin block of axoplasmic transport on sodium. J Neurobiol 13:537–549

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Iwasaki Y, Konno H (1984a) Experimental sensory ganglionectomy by way of suicide axoplasmic transport. J Neurosurg 60:108–114

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Iwasaki Y, Konno H (1984b) Retrograde axoplasmic transport of adriamycin: an experimental form of motor neuron disease? Neurology 34:1299–1304

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ochs, S. (1994). Kinetic and Metabolic Disorders of Axoplasmic Transport Induced by Neurotoxic Agents. In: Herken, H., Hucho, F. (eds) Selective Neurotoxicity. Springer Study Edition, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85117-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85117-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57815-4

  • Online ISBN: 978-3-642-85117-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics