Advertisement

Clostridium botulinum C2 Toxin and C. botulinum C3 ADP-Ribosyltransferase

  • K. Aktories
Part of the Springer Study Edition book series (volume 102)

Abstract

At least eight botulinum toxins (A, B, C1, C2, D, E, F, and G) are produced by the different types of Clostridium botulinum (Habermann and Dreyer 1986). With the exception of C2 toxin, seven are neurotoxins which presynaptically inhibit neurotransmitter release. To date, the molecular mechanism of the action of these most potent neurotoxins is unknown. C. botulinum C2 toxin is not a neurotoxin but acts on various peripheral cells (Simpson 1982; Ohishi et al. 1984). It belongs to a novel family of ADP-ribosylating toxins which modify actin (Aktories et al. 1986a,b). Besides C2 toxin, various strains of C. botulinum type C and D produce another ADP-ribosyltransferase, which was called C3 (Aktories et al. 1987a). This exoenzyme ADP-ribosylates low molecular mass GTP binding proteins. In this chapter, both clostridial ADP-ribosyltransferases are described in more detail.

Keywords

Pertussis Toxin Nicotinamide Adenine Dinucleotide Clostridium Perfringens Botulinum Neurotoxin Clostridium Botulinum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam-Vizi V, Rösener S, Aktories K, Knight DE (1988) Botulinum toxin-induced ADP-ribosylation and inhibition of exocytosis are unrelated events. FEBS Lett 238:277–280PubMedCrossRefGoogle Scholar
  2. Adari H, Lowy DR, Willumsen BM, der Channing J, McCormick F (1988) Guanosine triphosphate-activating protein (GAP) interacts with the p21 ras effector binding domain. Science 240:518–521PubMedCrossRefGoogle Scholar
  3. Aktories K, Frevert J (1987) ADP-ribosylation of a 21–24 kDa eukaryotic protein (s) by C3, a novel botulinum ADP-ribosyltransferase, is regulated by guanine nucleotide. Biochem J 247:363–368PubMedGoogle Scholar
  4. Aktories K, Hall A (1989) Botulinum ADP-ribosyltransferase C3: a new tool to study low molecular weight GTP-binding proteins. Trends Pharmacol Sci 10:415–418PubMedCrossRefGoogle Scholar
  5. Aktories K, Wegner A (1989) ADP-ribosylation of actin by clostridial toxins. J Cell Biol 109:1385–1387PubMedCrossRefGoogle Scholar
  6. Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986a) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392PubMedCrossRefGoogle Scholar
  7. Aktories K, Ankenbauer T, Schering B, Jakobs KH (1986b) ADP-ribosylation of platelet actin by botulinum C2 toxin. Eur J Biochem 161:155–162PubMedCrossRefGoogle Scholar
  8. Aktories K, Weller U, Chhatwal GS (1987) Clostridium botulinum type C produces a novel ADP-ribosyltransferase distinct from botulinum C2 toxin. FEBS Lett 212:109–113PubMedCrossRefGoogle Scholar
  9. Aktories K, Rösener S, Blaschke U, Chhatwal GS (1988a) Botulinum ADP- ribosyltransferase C3. Purification of the enzyme and characterization of the ADP-ribosylation reaction in platelet membranes. Eur J Biochem 172:445–450PubMedCrossRefGoogle Scholar
  10. Aktories K, Just I, Rosenthal W (1988b) Different types of ADP-ribose protein bonds formed by botulinum C2 toxin, botulinum ADP-ribosyltransferase C3 and pertussis toxin. Biochem Biophys Res Commun 156:361–367PubMedCrossRefGoogle Scholar
  11. Aktories K, Reuner K-H, Presek P, Bärmann M (1989a) Botulinum C2 toxin treatment increases the G-actin pool in intact chicken cells: a model for the cytopathic action of actin-ADP-ribosylating toxins. Toxicon 27:989–993PubMedCrossRefGoogle Scholar
  12. Aktories K, Braun U, Rösener S, Just I, Hall A (1989b) The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem Biophys Res Commun 158:209–213PubMedCrossRefGoogle Scholar
  13. Al-Mohanna FA, Ohishi I, Hallett MB (1987) Botulinum C2 toxin potentiates activation of the neutrophil oxidase. FEBS Lett 219:40–44PubMedCrossRefGoogle Scholar
  14. Barbacid M (1987) ras Genes. Annu Rev Biochem 56:779–827PubMedCrossRefGoogle Scholar
  15. Bershadsky AD, Vasiliev JM (1988) Cytoskeleton. Plenum, New YorkGoogle Scholar
  16. Böttinger H, Reuner KH, Aktories K (1987) Inhibition of histamine release from rat mast cells by botulinum C2 toxin. Int Arch Allergy Appl Immunol 84:380–384PubMedCrossRefGoogle Scholar
  17. Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular nmechanism. Nature 349:117–127PubMedCrossRefGoogle Scholar
  18. Braun U, Habermann B, Just I, Aktories K, Vandekerckhove, J (1989) Purification of the 22k Da protein substrate of botulinum ADP-ribosyltransferase C3 from porcine brain cytosol and its characterization as a GTP-binding protein highly homologous to the rho gene product. FEBS Lett 243:70–76PubMedCrossRefGoogle Scholar
  19. Chardin P, Tavitian A (1986) The ral gene: a new ras related gene isolated by the use of a synthetic probe. EMBO J 5:2203–2208PubMedGoogle Scholar
  20. Chardin P, Madaule P, Tavitian A (1988) Coding sequence of human rho cDNAs clone 6 and clone 9. Nucl Acids Res 16:2717PubMedCrossRefGoogle Scholar
  21. Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM (1989) The mammalian G protein rho C is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells. EMBO J 8:1087–1092PubMedGoogle Scholar
  22. Collier RJ, Cole HA (1969) Diphtheria toxin subunit active in vitro. Science 164:1179–1181PubMedCrossRefGoogle Scholar
  23. Collier RJ, Kandel J (1971) Structure and activity of diphtheria toxin. I. Thiol- dependent dissociation of a fraction of toxin into enzymatically active and inactive fragments. J Biol Chem 246:1496–1503PubMedGoogle Scholar
  24. Didsbury J, Weber RF, Bokoch GM, Evans T, Snyderman R (1989) Rac, a novel ras-related family of proteins that are botulihum toxin substrates. J Biol Chem 264:16378–16382PubMedGoogle Scholar
  25. Downward J, Riehl R, Wu L, Weinberg RA (1990) Identification of a nucleotide exchange-promoting activity for p21ras. Proc Natl Acad Sci USA 87:5988–6002CrossRefGoogle Scholar
  26. Eklund MW, Poysky FT (1972) Activation of a toxic component of Clostridium types C and D by trypsin. Appl Microbiol 24:108–113PubMedGoogle Scholar
  27. Eklund MW, Poysky FT, Reed SM, Smith CA (1971) Bacteriophage and the toxigenicity of Clostridium botulinum type C. Science 172:480–482PubMedCrossRefGoogle Scholar
  28. Garrett MD, Self AJ, von Oers C, Hall A (1989) Identification of distinct cytoplasmic targets for ras, R-ras and rho regulatory proteins. J Biol Chem 264:10–13PubMedGoogle Scholar
  29. Geipel U, Just I, Schering B, Haas D, Aktories K (1989) ADP-ribosylation of actin causes increase in the rate of ATP exchange and inhibition of ATP hydrolysis. Eur J Biochem 179:229–232PubMedCrossRefGoogle Scholar
  30. Geipel U, Just I, Aktories K (1990) Inhibition of cytochalasin D-stimulated G-actin ATPase by ADP-ribosylation with Clostridium perfringens iota toxin. Biochem J 266:335–339PubMedGoogle Scholar
  31. Gill DM (1977) Mechanism of action of cholera toxin. Adv Cyclic Nucleotide Res 8:85–118PubMedGoogle Scholar
  32. Habermann E, Dreyer F (1986) Clostridial neurotoxins: handling and action at the cellular and molecular level. Curr Top Microbiol Immunol 129:93–179PubMedCrossRefGoogle Scholar
  33. Habermann B, Mohr C, Just I, Aktories K (1991) ADP-ribosylation and de-ADP- ribosylation of the rho protein by Clostridium botulinum exoenzyme C3. Regulation by EDTA, guanine nucleotide and pH. Biochim Biophys Acta 1077:253–258PubMedCrossRefGoogle Scholar
  34. Hall A (1989) The cellular functions of small GTP-binding proteins. Science 249:635–640CrossRefGoogle Scholar
  35. Haubruck H, Disela C, Wagner P, Gallwitz D (1987) The ras-related ypt protein is an ubiquitous eukaryotic protein: isolation and sequence analysis of mouse cDNA clones highly homologous to the yeast YPT1 gene. EMBO J 6:4049–4053PubMedGoogle Scholar
  36. Hsia JA, Tsai S-C, Adamik R, Yost DA, Hewlett EL, Moss J (1985) Amino acid-specific ADP-ribosylation. J Biol Chem 260:16187–16191PubMedGoogle Scholar
  37. Just I, Schallehn G (1991) A novel C3-like ADP-ribosyltransferase produced by Clostridium limosum. Naunyn Schmiedeberg Arch Pharmacol [Suppl]343:R38Google Scholar
  38. Just I, Geipel U, Wegener A, Aktories K (1990) De-ADP-ribosylation of actin by Clostridium perfringens iota toxin and Clostridium botulinum C2 toxin. Eur J Biochem 192:723–727PubMedCrossRefGoogle Scholar
  39. Katada T, Northup JK, Bokoch GM, Ui M, Gilman AG (1984) The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase: subunit dissociation and guanine nucleotide-dependent hormonal inhibition. J Biol Chem 259:3578–3585PubMedGoogle Scholar
  40. Kikuchi A, Yamamoto K, Fujita T, Takai Y (1988) ADP-ribosylation of the bovine brain rho protein by botulinum toxin type Cl. J Biol Chem 263:16303–16308PubMedGoogle Scholar
  41. Lee H, Iglewski WJ (1984) Cellular ADP-ribosylation with the same mechanism of action as diphtheria toxin and Pseudomonas toxin A. Proc Natl Acad Sci USA 81:2703–2707PubMedCrossRefGoogle Scholar
  42. Leppla SH (1982) Anthrax toxin edema factor: bacterial adenylate cyclase that increases cyclic AMP concentrations in eukaryotic cells. Proc Natl Acad Sci USA 79:3162–3166PubMedCrossRefGoogle Scholar
  43. Madaule P, Axel R (1985) A novel ras-related gene family. Cell 41:31–40PubMedCrossRefGoogle Scholar
  44. Madaule P, Axel R, Myers AM (1987) Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 84:779–783PubMedCrossRefGoogle Scholar
  45. Matter K, Dreyer F, Aktories K (1989) Actin involvement in exocytosis from PC12 cells: studies on the influence of botulinum C2 toxin on stimulated noradrenaline release. J Neurochem 52:370–376PubMedCrossRefGoogle Scholar
  46. Mauss S, Koch G, Kreye VAW, Aktories K (1989) Inhibition of the contraction of the isolated longitudinal muscle of the guinea-pig ileum by botulinum C2 toxin: evidence for a role of G/F-actin Transltion in smooth muscle contraction. Naunyn Schmiedebergs Arch Pharmacol 340:345–351PubMedCrossRefGoogle Scholar
  47. Mauss S, Chaponnier C, Just I, Aktories K, Gabbiani G (1990) ADP-ribosylation of actin isoforms by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin. Eur J Biochem 194:237–241PubMedCrossRefGoogle Scholar
  48. Meyer T, Koch R, Fanick W, Hilz H (1988) ADP-ribosyl proteins formed by pertussis toxin are specifically cleaved by mercury ions. Biol Chem Hoppe Seyler 369:579–583PubMedCrossRefGoogle Scholar
  49. Narumiya S, Sekine A, Fujiwara M (1988) Substrate for botulinum ADP- ribosyltransferase, Gb, has an amino acid sequence homologous to a putative rho gene product. J Biol Chem 263:17255–17257PubMedGoogle Scholar
  50. Nishiki T, Narumiya S, Morii N, Yamamoto M, Fujiwara M, Kamata Y, Sakaguchi F, Kozacki S (1990) ADP-ribosylation of the rho/rac proteins induces growth inhibition, neurite outgrowth and acetylcholine esterase in cultured PC-12 cells. Biochem Biophys Res Commun 167:265–272PubMedCrossRefGoogle Scholar
  51. Noda M, Kato I, Matsuda F, Hirayama T (1981) Mode of action of staphylococcal leukocidin: relationship between binding of 125I-labeled S and F components of leukocidin to rabbit polymorphnuclear leukocytes and leukocidin activity. Infect Immun 34:362–367PubMedGoogle Scholar
  52. Norgauer J, Kownatzki E, Seifert R, Aktories K (1988) Botulinum C2 toxin ADP- ribosylates actin and enhances OJ-production and secretion but inhibits migration of activated human neutrophils. J Clin Invest 82:1376–1382PubMedCrossRefGoogle Scholar
  53. Norgauer J, Just I, Aktories K, Sklar LA (1989) Influence of botulinum C2 toxin on F-actin and N-formyl peptide receptor dynamics in human neutrophils. J Cell Biol 109:1133–1140PubMedCrossRefGoogle Scholar
  54. Ohishi I (1983a) Response of mouse intestinal loop to botulinum C2 toxin: enterotoxic activity induced by cooperation of nonlinked protein components. Infect Immun 40:691–695PubMedGoogle Scholar
  55. Ohishi I (1983b) Lethal and vascular permeability activities of botulinum C2 toxin induced by separate injection of the two toxin components. Infect Immun 40:336–339PubMedGoogle Scholar
  56. Ohishi I (1987) Activation of botulinum C2 toxin by trypsin. Infect Immun 55:1461–1465PubMedGoogle Scholar
  57. Ohishi I, Miyake M (1985) Binding of the two components of C2 toxin to epithelial cells and brush borders of mouse intestine. Infect Immun 48:769–775PubMedGoogle Scholar
  58. Ohishi I, Odagiri Y (1984) Histopathological effect of botulinum C2 toxin on mouse intestines. Infect Immun 43:54–58PubMedGoogle Scholar
  59. Ohishi I, Iwasaki M, Sakaguchi G (1980) Purification and characterization of two components of botulinum C2 toxin. Infect Immun 30:668–673PubMedGoogle Scholar
  60. Ohishi I, Miyake M, Ogura K, Nakamura S (1984) Cytopathic effect of botulinum C2 toxin on tissue-culture cell lines. FEMS Lett Microbiol 23:281–284CrossRefGoogle Scholar
  61. Pai EF, Kabsch W, Krengel U, Holmes KC, John J, Wittinghofer A (1989) Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341:209–214PubMedCrossRefGoogle Scholar
  62. Paterson HF, Self AJ, Garrett MD, Just I, Aktories K, Hall A (1990) Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol 111:1001–1007PubMedCrossRefGoogle Scholar
  63. Pizon V, Chardin P, Lerosey I, Olofson B, Tavitian A (1988) Human cDNAs rap 1 and rap 2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the “effector” region. Ocogene 3:201–204Google Scholar
  64. Pollard T, Cooper JA (1986) Actin and actin-binding Proteins. A critical evaluation of mechanism and functions. Annu Rev Biochem 55:987–1035PubMedCrossRefGoogle Scholar
  65. Popoff MR, Boquet P (1988) Clostridium spiroforme toxin is a binary toxin which ADP-ribosylates cellular actin. Biochem Biophys Res Commun 152:1361–1368PubMedCrossRefGoogle Scholar
  66. Popoff MR, Rubin EJ, Gill DM, Boquet P (1988) Actin-specific ADP- ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 56:2299–2306PubMedGoogle Scholar
  67. Popoff MR, Boquet P, Gill DM, Eklund MW (1990) DNA sequence of exoenzyme C3, an ADP-ribosyltransferase encoded by Clostridium botulinum C and D phages. Nucleic Acids Res 18:1291PubMedCrossRefGoogle Scholar
  68. Reddy E, Reynolds R, Santos E, Barbacid (1982) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300:149–152PubMedCrossRefGoogle Scholar
  69. Reuner KH, Presek P, Boschek CB, Aktories K (1987) Botulinum C2 toxin ADP- ribosylates actin and disorganizes the microfilament network in intact cells. Eur J Cell Biol 43:134–140PubMedGoogle Scholar
  70. Rösener S, Chhatwal GS, Aktories K (1987) Botulinum ADP-ribosyltransferase C3 but not botulinum neurotoxins C1 and D ADP-ribosylates low molecular mass GTP-binding proteins. 1987. FEBS Lett 224:38–42PubMedCrossRefGoogle Scholar
  71. Rubin EJ, Gill DM, Boquet P, Popoff MR (1988) Functional modification of a 21-kilodalton G protein when ADP-ribosylated by exoenzyme C3 of Clostridium botulinum. Mol Cell Biol 8:418–426PubMedGoogle Scholar
  72. Schering B, Bärmann M, Chhatwal GS, Geipel U, Aktories K (1988) ADP- ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur J Biochem 171:225–229PubMedCrossRefGoogle Scholar
  73. Sekine A, Fujiwara M, Narumiya S (1989) Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem 264:8602–8605PubMedGoogle Scholar
  74. Simpson LL (1982) A comparison of the pharmacological properties of Clostridium botulinum type Cl and C2 toxins. J Pharmacol Exp Ther 223:695–701PubMedGoogle Scholar
  75. Simpson LL (1984) Molecular basis for the pharmacological actions of Clostridium botulinum type C2 toxin. J Pharmacol Exp Ther 230:665–669PubMedGoogle Scholar
  76. Simpson LL (1989) The binary toxin produced by Clostridium botulinum enters cells by receptor-mediated endocytosis to exert its pharmacologic effects. J Pharmacol Exp Ther 251:1223–1228PubMedGoogle Scholar
  77. Simpson LL, Stiles BG, Zapeda HH, Wilkins TD (1987) Molecular basis for the pathological actions of Clostridium perfringens iota toxin. Infect Immun 55:118–122PubMedGoogle Scholar
  78. Simpson LL, Stiles BG, Zepeda H, Wilkins TD (1989) Production by Clostridium spiroforme of an iotalike toxin that possesses mono(ADP-ribosyl)transferase activity: identification of a novel class of ADP-ribosyltransferases. Infect Immun 57:255–261PubMedGoogle Scholar
  79. Skalli O, Vandekerckhove J, Gabbiani G (1987) Actin-isoform pattern as a marker of normal or pathological smooth-muscle and fibroblastic tissues. Differentiation 33:232–238PubMedCrossRefGoogle Scholar
  80. Stiles BG, Wilkins TD (1986) Purification and characterization of Clostridium perfringens iota toxin: dependence on two nonlinked proteins for biological activity. Infect Immun 54:6783–688Google Scholar
  81. Tamura M, Nogimuri K, Murai S, Yajima M, Ito K, Katada T, Ui M, Ishii S (1982) Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry 21:5516–5522PubMedCrossRefGoogle Scholar
  82. Tanuma S, Kawashima K, Endo N (1988) Eukaryotic mono(ADP-ribosyl)transferase that ADP-ribosylates GTP-binding regulatory Gi protein. J Biol Chem 263:5485–5489PubMedGoogle Scholar
  83. Touchot N, Chardin P, Tavitian A (1987) Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT- related cDNAs from a rat brain library. Proc Natl Acad Sci USA 84:8210–8214PubMedCrossRefGoogle Scholar
  84. Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase but does not affect oncogenic mutants. Science 238:542–545PubMedCrossRefGoogle Scholar
  85. Ueda T, Kikuchi A, Ohga N, Yamamoto J, Tairai Y (1990) Purification and characterization from bovine brain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to rhoB p20, a ras-like GTP-binding protein. J Biol Chem 265:9373–9380PubMedGoogle Scholar
  86. Vandekerckhove J, Weber K (1979) The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle and rabbit slow skeletal muscle. Differentiation 14:123–133PubMedCrossRefGoogle Scholar
  87. Vandekerckhove J, Schering B, Bärmann M, Aktories K (1987) Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Are-177. FEBS Lett 225:48–52PubMedCrossRefGoogle Scholar
  88. Vandekerckhove J, Schering B, Bärmann M, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates cytoplasmic β/γ-actin in arginine 177. J Biol Chem 263:696–700PubMedGoogle Scholar
  89. Van Dop C, Yamanaka G, Steinberg F, Sekura RD, Manclark CR, Stryer L, Bourne HR (1984) ADP-ribosylation of transducin by pertussis toxin blocks the light-stimulated hydrolysis of GTP and cGMP in retinal photoreceptors. J Biol Chem 259:23–26PubMedGoogle Scholar
  90. Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263:13739–13742PubMedGoogle Scholar
  91. Weigt C, Just I, Wegner A, Aktories K (1989) Nonmuscle actin ADP-ribosylated by botulinum C2 toxin caps actin filaments. FEBS Lett 246:181–184PubMedCrossRefGoogle Scholar
  92. Wiegers W, Just I, Müller H, Hellwig A, Traub P, Aktories K (1991) Alteration of the cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP-ribosyltransferase. Eur J Cell Biol 54:237–245PubMedGoogle Scholar
  93. Wieland T, Ulibarri I, Aktories K, Gierschik P, Jakobs KH (1990) Interaction of small G proteins with photoexcited rhodopsin. FEBS Lett 263:195–198PubMedCrossRefGoogle Scholar
  94. Wolfman A, Macara IG (1990) A cytosolic protein catalyzes the release of GDP from p21ras. Science 248:67–69PubMedCrossRefGoogle Scholar
  95. Yeramian P, Chardin P, Madaule P, Tavitian A (1987) Nucleotide sequence of human rho cDNA clone 12. Nucleic Acids Res 15:1869PubMedCrossRefGoogle Scholar
  96. Zepeda H, Considine RV, Smith HL, Sherwin JA, Ohishi I, Simpson LL (1988) Actions of the Clostridium botulinum binary toxin on the structure and function of Y-l adrenal cells. J Pharmacol Exp Ther 246:1183–1189PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • K. Aktories

There are no affiliations available

Personalised recommendations