Skip to main content

Clostridium botulinum C2 Toxin and C. botulinum C3 ADP-Ribosyltransferase

  • Chapter
Selective Neurotoxicity

Part of the book series: Springer Study Edition ((SSE,volume 102))

Abstract

At least eight botulinum toxins (A, B, C1, C2, D, E, F, and G) are produced by the different types of Clostridium botulinum (Habermann and Dreyer 1986). With the exception of C2 toxin, seven are neurotoxins which presynaptically inhibit neurotransmitter release. To date, the molecular mechanism of the action of these most potent neurotoxins is unknown. C. botulinum C2 toxin is not a neurotoxin but acts on various peripheral cells (Simpson 1982; Ohishi et al. 1984). It belongs to a novel family of ADP-ribosylating toxins which modify actin (Aktories et al. 1986a,b). Besides C2 toxin, various strains of C. botulinum type C and D produce another ADP-ribosyltransferase, which was called C3 (Aktories et al. 1987a). This exoenzyme ADP-ribosylates low molecular mass GTP binding proteins. In this chapter, both clostridial ADP-ribosyltransferases are described in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam-Vizi V, Rösener S, Aktories K, Knight DE (1988) Botulinum toxin-induced ADP-ribosylation and inhibition of exocytosis are unrelated events. FEBS Lett 238:277–280

    Article  PubMed  CAS  Google Scholar 

  • Adari H, Lowy DR, Willumsen BM, der Channing J, McCormick F (1988) Guanosine triphosphate-activating protein (GAP) interacts with the p21 ras effector binding domain. Science 240:518–521

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Frevert J (1987) ADP-ribosylation of a 21–24 kDa eukaryotic protein (s) by C3, a novel botulinum ADP-ribosyltransferase, is regulated by guanine nucleotide. Biochem J 247:363–368

    PubMed  CAS  Google Scholar 

  • Aktories K, Hall A (1989) Botulinum ADP-ribosyltransferase C3: a new tool to study low molecular weight GTP-binding proteins. Trends Pharmacol Sci 10:415–418

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Wegner A (1989) ADP-ribosylation of actin by clostridial toxins. J Cell Biol 109:1385–1387

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986a) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Ankenbauer T, Schering B, Jakobs KH (1986b) ADP-ribosylation of platelet actin by botulinum C2 toxin. Eur J Biochem 161:155–162

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Weller U, Chhatwal GS (1987) Clostridium botulinum type C produces a novel ADP-ribosyltransferase distinct from botulinum C2 toxin. FEBS Lett 212:109–113

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Rösener S, Blaschke U, Chhatwal GS (1988a) Botulinum ADP- ribosyltransferase C3. Purification of the enzyme and characterization of the ADP-ribosylation reaction in platelet membranes. Eur J Biochem 172:445–450

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Just I, Rosenthal W (1988b) Different types of ADP-ribose protein bonds formed by botulinum C2 toxin, botulinum ADP-ribosyltransferase C3 and pertussis toxin. Biochem Biophys Res Commun 156:361–367

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Reuner K-H, Presek P, Bärmann M (1989a) Botulinum C2 toxin treatment increases the G-actin pool in intact chicken cells: a model for the cytopathic action of actin-ADP-ribosylating toxins. Toxicon 27:989–993

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Braun U, Rösener S, Just I, Hall A (1989b) The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem Biophys Res Commun 158:209–213

    Article  PubMed  CAS  Google Scholar 

  • Al-Mohanna FA, Ohishi I, Hallett MB (1987) Botulinum C2 toxin potentiates activation of the neutrophil oxidase. FEBS Lett 219:40–44

    Article  PubMed  CAS  Google Scholar 

  • Barbacid M (1987) ras Genes. Annu Rev Biochem 56:779–827

    Article  PubMed  CAS  Google Scholar 

  • Bershadsky AD, Vasiliev JM (1988) Cytoskeleton. Plenum, New York

    Google Scholar 

  • Böttinger H, Reuner KH, Aktories K (1987) Inhibition of histamine release from rat mast cells by botulinum C2 toxin. Int Arch Allergy Appl Immunol 84:380–384

    Article  PubMed  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular nmechanism. Nature 349:117–127

    Article  PubMed  CAS  Google Scholar 

  • Braun U, Habermann B, Just I, Aktories K, Vandekerckhove, J (1989) Purification of the 22k Da protein substrate of botulinum ADP-ribosyltransferase C3 from porcine brain cytosol and its characterization as a GTP-binding protein highly homologous to the rho gene product. FEBS Lett 243:70–76

    Article  PubMed  CAS  Google Scholar 

  • Chardin P, Tavitian A (1986) The ral gene: a new ras related gene isolated by the use of a synthetic probe. EMBO J 5:2203–2208

    PubMed  CAS  Google Scholar 

  • Chardin P, Madaule P, Tavitian A (1988) Coding sequence of human rho cDNAs clone 6 and clone 9. Nucl Acids Res 16:2717

    Article  PubMed  CAS  Google Scholar 

  • Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM (1989) The mammalian G protein rho C is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells. EMBO J 8:1087–1092

    PubMed  CAS  Google Scholar 

  • Collier RJ, Cole HA (1969) Diphtheria toxin subunit active in vitro. Science 164:1179–1181

    Article  PubMed  CAS  Google Scholar 

  • Collier RJ, Kandel J (1971) Structure and activity of diphtheria toxin. I. Thiol- dependent dissociation of a fraction of toxin into enzymatically active and inactive fragments. J Biol Chem 246:1496–1503

    PubMed  CAS  Google Scholar 

  • Didsbury J, Weber RF, Bokoch GM, Evans T, Snyderman R (1989) Rac, a novel ras-related family of proteins that are botulihum toxin substrates. J Biol Chem 264:16378–16382

    PubMed  CAS  Google Scholar 

  • Downward J, Riehl R, Wu L, Weinberg RA (1990) Identification of a nucleotide exchange-promoting activity for p21ras. Proc Natl Acad Sci USA 87:5988–6002

    Article  Google Scholar 

  • Eklund MW, Poysky FT (1972) Activation of a toxic component of Clostridium types C and D by trypsin. Appl Microbiol 24:108–113

    PubMed  CAS  Google Scholar 

  • Eklund MW, Poysky FT, Reed SM, Smith CA (1971) Bacteriophage and the toxigenicity of Clostridium botulinum type C. Science 172:480–482

    Article  PubMed  CAS  Google Scholar 

  • Garrett MD, Self AJ, von Oers C, Hall A (1989) Identification of distinct cytoplasmic targets for ras, R-ras and rho regulatory proteins. J Biol Chem 264:10–13

    PubMed  CAS  Google Scholar 

  • Geipel U, Just I, Schering B, Haas D, Aktories K (1989) ADP-ribosylation of actin causes increase in the rate of ATP exchange and inhibition of ATP hydrolysis. Eur J Biochem 179:229–232

    Article  PubMed  CAS  Google Scholar 

  • Geipel U, Just I, Aktories K (1990) Inhibition of cytochalasin D-stimulated G-actin ATPase by ADP-ribosylation with Clostridium perfringens iota toxin. Biochem J 266:335–339

    PubMed  CAS  Google Scholar 

  • Gill DM (1977) Mechanism of action of cholera toxin. Adv Cyclic Nucleotide Res 8:85–118

    PubMed  CAS  Google Scholar 

  • Habermann E, Dreyer F (1986) Clostridial neurotoxins: handling and action at the cellular and molecular level. Curr Top Microbiol Immunol 129:93–179

    Article  PubMed  CAS  Google Scholar 

  • Habermann B, Mohr C, Just I, Aktories K (1991) ADP-ribosylation and de-ADP- ribosylation of the rho protein by Clostridium botulinum exoenzyme C3. Regulation by EDTA, guanine nucleotide and pH. Biochim Biophys Acta 1077:253–258

    Article  PubMed  CAS  Google Scholar 

  • Hall A (1989) The cellular functions of small GTP-binding proteins. Science 249:635–640

    Article  Google Scholar 

  • Haubruck H, Disela C, Wagner P, Gallwitz D (1987) The ras-related ypt protein is an ubiquitous eukaryotic protein: isolation and sequence analysis of mouse cDNA clones highly homologous to the yeast YPT1 gene. EMBO J 6:4049–4053

    PubMed  CAS  Google Scholar 

  • Hsia JA, Tsai S-C, Adamik R, Yost DA, Hewlett EL, Moss J (1985) Amino acid-specific ADP-ribosylation. J Biol Chem 260:16187–16191

    PubMed  CAS  Google Scholar 

  • Just I, Schallehn G (1991) A novel C3-like ADP-ribosyltransferase produced by Clostridium limosum. Naunyn Schmiedeberg Arch Pharmacol [Suppl]343:R38

    Google Scholar 

  • Just I, Geipel U, Wegener A, Aktories K (1990) De-ADP-ribosylation of actin by Clostridium perfringens iota toxin and Clostridium botulinum C2 toxin. Eur J Biochem 192:723–727

    Article  PubMed  CAS  Google Scholar 

  • Katada T, Northup JK, Bokoch GM, Ui M, Gilman AG (1984) The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase: subunit dissociation and guanine nucleotide-dependent hormonal inhibition. J Biol Chem 259:3578–3585

    PubMed  CAS  Google Scholar 

  • Kikuchi A, Yamamoto K, Fujita T, Takai Y (1988) ADP-ribosylation of the bovine brain rho protein by botulinum toxin type Cl. J Biol Chem 263:16303–16308

    PubMed  CAS  Google Scholar 

  • Lee H, Iglewski WJ (1984) Cellular ADP-ribosylation with the same mechanism of action as diphtheria toxin and Pseudomonas toxin A. Proc Natl Acad Sci USA 81:2703–2707

    Article  PubMed  CAS  Google Scholar 

  • Leppla SH (1982) Anthrax toxin edema factor: bacterial adenylate cyclase that increases cyclic AMP concentrations in eukaryotic cells. Proc Natl Acad Sci USA 79:3162–3166

    Article  PubMed  CAS  Google Scholar 

  • Madaule P, Axel R (1985) A novel ras-related gene family. Cell 41:31–40

    Article  PubMed  CAS  Google Scholar 

  • Madaule P, Axel R, Myers AM (1987) Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 84:779–783

    Article  PubMed  CAS  Google Scholar 

  • Matter K, Dreyer F, Aktories K (1989) Actin involvement in exocytosis from PC12 cells: studies on the influence of botulinum C2 toxin on stimulated noradrenaline release. J Neurochem 52:370–376

    Article  PubMed  CAS  Google Scholar 

  • Mauss S, Koch G, Kreye VAW, Aktories K (1989) Inhibition of the contraction of the isolated longitudinal muscle of the guinea-pig ileum by botulinum C2 toxin: evidence for a role of G/F-actin Transltion in smooth muscle contraction. Naunyn Schmiedebergs Arch Pharmacol 340:345–351

    Article  PubMed  CAS  Google Scholar 

  • Mauss S, Chaponnier C, Just I, Aktories K, Gabbiani G (1990) ADP-ribosylation of actin isoforms by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin. Eur J Biochem 194:237–241

    Article  PubMed  CAS  Google Scholar 

  • Meyer T, Koch R, Fanick W, Hilz H (1988) ADP-ribosyl proteins formed by pertussis toxin are specifically cleaved by mercury ions. Biol Chem Hoppe Seyler 369:579–583

    Article  PubMed  CAS  Google Scholar 

  • Narumiya S, Sekine A, Fujiwara M (1988) Substrate for botulinum ADP- ribosyltransferase, Gb, has an amino acid sequence homologous to a putative rho gene product. J Biol Chem 263:17255–17257

    PubMed  CAS  Google Scholar 

  • Nishiki T, Narumiya S, Morii N, Yamamoto M, Fujiwara M, Kamata Y, Sakaguchi F, Kozacki S (1990) ADP-ribosylation of the rho/rac proteins induces growth inhibition, neurite outgrowth and acetylcholine esterase in cultured PC-12 cells. Biochem Biophys Res Commun 167:265–272

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Kato I, Matsuda F, Hirayama T (1981) Mode of action of staphylococcal leukocidin: relationship between binding of 125I-labeled S and F components of leukocidin to rabbit polymorphnuclear leukocytes and leukocidin activity. Infect Immun 34:362–367

    PubMed  CAS  Google Scholar 

  • Norgauer J, Kownatzki E, Seifert R, Aktories K (1988) Botulinum C2 toxin ADP- ribosylates actin and enhances OJ-production and secretion but inhibits migration of activated human neutrophils. J Clin Invest 82:1376–1382

    Article  PubMed  CAS  Google Scholar 

  • Norgauer J, Just I, Aktories K, Sklar LA (1989) Influence of botulinum C2 toxin on F-actin and N-formyl peptide receptor dynamics in human neutrophils. J Cell Biol 109:1133–1140

    Article  PubMed  CAS  Google Scholar 

  • Ohishi I (1983a) Response of mouse intestinal loop to botulinum C2 toxin: enterotoxic activity induced by cooperation of nonlinked protein components. Infect Immun 40:691–695

    PubMed  CAS  Google Scholar 

  • Ohishi I (1983b) Lethal and vascular permeability activities of botulinum C2 toxin induced by separate injection of the two toxin components. Infect Immun 40:336–339

    PubMed  CAS  Google Scholar 

  • Ohishi I (1987) Activation of botulinum C2 toxin by trypsin. Infect Immun 55:1461–1465

    PubMed  CAS  Google Scholar 

  • Ohishi I, Miyake M (1985) Binding of the two components of C2 toxin to epithelial cells and brush borders of mouse intestine. Infect Immun 48:769–775

    PubMed  CAS  Google Scholar 

  • Ohishi I, Odagiri Y (1984) Histopathological effect of botulinum C2 toxin on mouse intestines. Infect Immun 43:54–58

    PubMed  CAS  Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G (1980) Purification and characterization of two components of botulinum C2 toxin. Infect Immun 30:668–673

    PubMed  CAS  Google Scholar 

  • Ohishi I, Miyake M, Ogura K, Nakamura S (1984) Cytopathic effect of botulinum C2 toxin on tissue-culture cell lines. FEMS Lett Microbiol 23:281–284

    Article  CAS  Google Scholar 

  • Pai EF, Kabsch W, Krengel U, Holmes KC, John J, Wittinghofer A (1989) Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341:209–214

    Article  PubMed  CAS  Google Scholar 

  • Paterson HF, Self AJ, Garrett MD, Just I, Aktories K, Hall A (1990) Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol 111:1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Pizon V, Chardin P, Lerosey I, Olofson B, Tavitian A (1988) Human cDNAs rap 1 and rap 2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the “effector” region. Ocogene 3:201–204

    CAS  Google Scholar 

  • Pollard T, Cooper JA (1986) Actin and actin-binding Proteins. A critical evaluation of mechanism and functions. Annu Rev Biochem 55:987–1035

    Article  PubMed  CAS  Google Scholar 

  • Popoff MR, Boquet P (1988) Clostridium spiroforme toxin is a binary toxin which ADP-ribosylates cellular actin. Biochem Biophys Res Commun 152:1361–1368

    Article  PubMed  CAS  Google Scholar 

  • Popoff MR, Rubin EJ, Gill DM, Boquet P (1988) Actin-specific ADP- ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 56:2299–2306

    PubMed  CAS  Google Scholar 

  • Popoff MR, Boquet P, Gill DM, Eklund MW (1990) DNA sequence of exoenzyme C3, an ADP-ribosyltransferase encoded by Clostridium botulinum C and D phages. Nucleic Acids Res 18:1291

    Article  PubMed  CAS  Google Scholar 

  • Reddy E, Reynolds R, Santos E, Barbacid (1982) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300:149–152

    Article  PubMed  CAS  Google Scholar 

  • Reuner KH, Presek P, Boschek CB, Aktories K (1987) Botulinum C2 toxin ADP- ribosylates actin and disorganizes the microfilament network in intact cells. Eur J Cell Biol 43:134–140

    PubMed  CAS  Google Scholar 

  • Rösener S, Chhatwal GS, Aktories K (1987) Botulinum ADP-ribosyltransferase C3 but not botulinum neurotoxins C1 and D ADP-ribosylates low molecular mass GTP-binding proteins. 1987. FEBS Lett 224:38–42

    Article  PubMed  Google Scholar 

  • Rubin EJ, Gill DM, Boquet P, Popoff MR (1988) Functional modification of a 21-kilodalton G protein when ADP-ribosylated by exoenzyme C3 of Clostridium botulinum. Mol Cell Biol 8:418–426

    PubMed  CAS  Google Scholar 

  • Schering B, Bärmann M, Chhatwal GS, Geipel U, Aktories K (1988) ADP- ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur J Biochem 171:225–229

    Article  PubMed  CAS  Google Scholar 

  • Sekine A, Fujiwara M, Narumiya S (1989) Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem 264:8602–8605

    PubMed  CAS  Google Scholar 

  • Simpson LL (1982) A comparison of the pharmacological properties of Clostridium botulinum type Cl and C2 toxins. J Pharmacol Exp Ther 223:695–701

    PubMed  CAS  Google Scholar 

  • Simpson LL (1984) Molecular basis for the pharmacological actions of Clostridium botulinum type C2 toxin. J Pharmacol Exp Ther 230:665–669

    PubMed  CAS  Google Scholar 

  • Simpson LL (1989) The binary toxin produced by Clostridium botulinum enters cells by receptor-mediated endocytosis to exert its pharmacologic effects. J Pharmacol Exp Ther 251:1223–1228

    PubMed  CAS  Google Scholar 

  • Simpson LL, Stiles BG, Zapeda HH, Wilkins TD (1987) Molecular basis for the pathological actions of Clostridium perfringens iota toxin. Infect Immun 55:118–122

    PubMed  CAS  Google Scholar 

  • Simpson LL, Stiles BG, Zepeda H, Wilkins TD (1989) Production by Clostridium spiroforme of an iotalike toxin that possesses mono(ADP-ribosyl)transferase activity: identification of a novel class of ADP-ribosyltransferases. Infect Immun 57:255–261

    PubMed  CAS  Google Scholar 

  • Skalli O, Vandekerckhove J, Gabbiani G (1987) Actin-isoform pattern as a marker of normal or pathological smooth-muscle and fibroblastic tissues. Differentiation 33:232–238

    Article  PubMed  CAS  Google Scholar 

  • Stiles BG, Wilkins TD (1986) Purification and characterization of Clostridium perfringens iota toxin: dependence on two nonlinked proteins for biological activity. Infect Immun 54:6783–688

    Google Scholar 

  • Tamura M, Nogimuri K, Murai S, Yajima M, Ito K, Katada T, Ui M, Ishii S (1982) Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry 21:5516–5522

    Article  PubMed  CAS  Google Scholar 

  • Tanuma S, Kawashima K, Endo N (1988) Eukaryotic mono(ADP-ribosyl)transferase that ADP-ribosylates GTP-binding regulatory Gi protein. J Biol Chem 263:5485–5489

    PubMed  CAS  Google Scholar 

  • Touchot N, Chardin P, Tavitian A (1987) Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT- related cDNAs from a rat brain library. Proc Natl Acad Sci USA 84:8210–8214

    Article  PubMed  CAS  Google Scholar 

  • Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase but does not affect oncogenic mutants. Science 238:542–545

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Kikuchi A, Ohga N, Yamamoto J, Tairai Y (1990) Purification and characterization from bovine brain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to rhoB p20, a ras-like GTP-binding protein. J Biol Chem 265:9373–9380

    PubMed  CAS  Google Scholar 

  • Vandekerckhove J, Weber K (1979) The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle and rabbit slow skeletal muscle. Differentiation 14:123–133

    Article  PubMed  CAS  Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1987) Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Are-177. FEBS Lett 225:48–52

    Article  PubMed  CAS  Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates cytoplasmic β/γ-actin in arginine 177. J Biol Chem 263:696–700

    PubMed  CAS  Google Scholar 

  • Van Dop C, Yamanaka G, Steinberg F, Sekura RD, Manclark CR, Stryer L, Bourne HR (1984) ADP-ribosylation of transducin by pertussis toxin blocks the light-stimulated hydrolysis of GTP and cGMP in retinal photoreceptors. J Biol Chem 259:23–26

    PubMed  Google Scholar 

  • Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263:13739–13742

    PubMed  CAS  Google Scholar 

  • Weigt C, Just I, Wegner A, Aktories K (1989) Nonmuscle actin ADP-ribosylated by botulinum C2 toxin caps actin filaments. FEBS Lett 246:181–184

    Article  PubMed  CAS  Google Scholar 

  • Wiegers W, Just I, Müller H, Hellwig A, Traub P, Aktories K (1991) Alteration of the cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP-ribosyltransferase. Eur J Cell Biol 54:237–245

    PubMed  CAS  Google Scholar 

  • Wieland T, Ulibarri I, Aktories K, Gierschik P, Jakobs KH (1990) Interaction of small G proteins with photoexcited rhodopsin. FEBS Lett 263:195–198

    Article  PubMed  CAS  Google Scholar 

  • Wolfman A, Macara IG (1990) A cytosolic protein catalyzes the release of GDP from p21ras. Science 248:67–69

    Article  PubMed  CAS  Google Scholar 

  • Yeramian P, Chardin P, Madaule P, Tavitian A (1987) Nucleotide sequence of human rho cDNA clone 12. Nucleic Acids Res 15:1869

    Article  PubMed  CAS  Google Scholar 

  • Zepeda H, Considine RV, Smith HL, Sherwin JA, Ohishi I, Simpson LL (1988) Actions of the Clostridium botulinum binary toxin on the structure and function of Y-l adrenal cells. J Pharmacol Exp Ther 246:1183–1189

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aktories, K. (1994). Clostridium botulinum C2 Toxin and C. botulinum C3 ADP-Ribosyltransferase. In: Herken, H., Hucho, F. (eds) Selective Neurotoxicity. Springer Study Edition, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85117-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85117-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57815-4

  • Online ISBN: 978-3-642-85117-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics