Fatigue Lifetime Prediction for Uncertain Systems

  • Fabio Casciati
  • Pierluigi Colombi
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


Fatigue life prediction deals with factors which can be modeled as random variables, random processes or stochastic fields. Given a probabilistic definition of these factors, the life distribution results from a reliability analysis. The advanced mean value first order (AMVFO) method was suggested to minimize the number of functions to be evaluated in the computation of the probability of failure, but it works only if all the uncertainties can be regarded as random variables. A more powerful method must be used when random processes and random fields are present; the potentialities of an extended response surface method are illustrated in this paper. The cumulative distribution function (CDF) of the number of cycles to failure is evaluated by both methods and the results are compared and discussed.


Fatigue lifetime prediction response surface structural reliability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bignonnet, A. & Olagnon, M., Fatigue Life Prediction for Variable Amplitude Loading, X Offshore Mechanics and Artic Engineering Conference, ed. Salama M.M., Ree H.C., Kam J.P.C., Booth G.S., Williams J.G., ASME, New York, 1991, pp. 395–401.Google Scholar
  2. 2.
    Broek D., Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, New York, 1982.Google Scholar
  3. 3.
    Casciati F. & Faravelli L., Fragility Analysis of Complex Structural System Research Studies Press Ltd., Taunton, 1991.Google Scholar
  4. 4.
    Casciati F., Colombi P. & Faravelli L., Filter Technique for Stochastic Crack Growth, Fatigue Fract. Engng. Mater. Struct., 15 (5), (1992), 463–475.CrossRefGoogle Scholar
  5. 5.
    Casciati F., Colombi P. & Faravelli L., Lifetime Prediction of Fatigue Sensitive Structural Elements, Structural Safety, 12, (1993), 105–111.CrossRefGoogle Scholar
  6. 6.
    Casciati F. & Colombi P., Load Combination and Related Fatigue Reliability Problems, Structural Safety, in press.Google Scholar
  7. 7.
    Faravelli L., Structural Reliability via Response Surface, Nonlinear Stochastic Mechanics, ed. Bellomo N. & asciati F., Springer-Verlag, Berlin, 1991, pp. 213–223.Google Scholar
  8. 8.
    Ishikawa H., Tsurui A., Tanaka H. & Ishikawa H., Reliability Assesment of Structures Based Upon Probabilistic Fracture Mechanics, Probabilistic Engineering Mechanics, 8, (1993),43–56.CrossRefGoogle Scholar
  9. 9.
    Kozin F. & Bogdanoff J.L., A Critical Analysis of Some Probabilistic Models of Fatigue Crack Growth, Eng. Frac. Mech., 14, (1981), 59–89.CrossRefGoogle Scholar
  10. 10.
    Lin Y.K. & Yang J.N., On Statistical Moments of Fatigue Crack Propagation, Eng. Fract. Mech., 18, (1983), 243–256.CrossRefGoogle Scholar
  11. 11.
    Schijve J., Observation on the Prediction of Fatigue Crack Growth Propagation under Variable Amplitude Loading, Fatigue Crack Growth Under Spectrum Loads, ASTM SPT 595, 1976.Google Scholar
  12. 12.
    Solomos G.P., First-Passage Solution in Fatigue Crack Propagation, Prob. Eng. Mech., 15 (5), (1989), 32–39.CrossRefGoogle Scholar
  13. 13.
    Tang J. & Spencer B.F. Jr., Reliability Solution for the Stocahstic Fatigue Crack Growth Problem, Eng. Fract. Mech., 34, (1989), 419–433.CrossRefGoogle Scholar
  14. 14.
    Wirshing P.H., Ortiz K. & Chen Y.N., Fracture Mechanics Fatigue Model in a Reliability Format, VI Int. Symp. Offshore Mech. and Artic Eng., ASME, New York, 1987, pp. 331–337.Google Scholar
  15. 15.
    Wirshing P.H., Torng T.Y. & Martin W.S., Advanced Fatigue Reliability Analysis, Int. J. Fatigue 13 (5), (1991), 389–394.CrossRefGoogle Scholar
  16. 16.
    Wu Y.T., Burnside O.H. & Dominquez J., Efficient Probabilistic Fracture Mechanics Analysis, Fourth Int. Conf. Numerical Methods in Fracture Mechanics, Pineridge Press, Swansea, 1987, pp. 85–100.Google Scholar
  17. 17.
    Wu Y.T., Millwater H.R. & Cruse T.A., An Advanced Probability Structural Analysis Method for Implicit Performance Functions, 30th Structures, Structural Dynamics and Materials Conference, Mobile, Alabama, 1989.Google Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1994

Authors and Affiliations

  • Fabio Casciati
    • 1
  • Pierluigi Colombi
    • 1
  1. 1.Department of Structural MechanicsUniversity of PaviaPaviaItaly

Personalised recommendations