Advertisement

Stochastic Boundary Element Methods: Computational Methodology and Applications

  • Tadeusz Burczyński
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Abstract

Basic concepts of computational methodology of the stochastic boundary element method are presented. Applications of stochastic boundary elements to dynamic problems, stochastic media and stochastic shape sensitivity analysis are presented.

Keywords

Stochastic boundary elements random vibration stochastic media sensitivity analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burczyński, T., Stochastic boundary value problems of elastostatics in terms of the boundary integral equation method. Papers of Inst. Civil Engng., Wroclaw Technical University, Vol. 1, No.28, Wroclaw, 1981, pp.61–68, (in Polish).Google Scholar
  2. 2.
    Burczyński, T., The boundary element method for stochastic potential problems. Applied Math. Modelling, 9 (1985) 189–194.zbMATHCrossRefGoogle Scholar
  3. 3.
    Burczyński, T., Stochastic formulation of wheelset dynamics by means of the boundary element method. Proc. 8th International Wheelset Congress, Madrid, Vol.1, 1985, pp.3/1–3/15.Google Scholar
  4. 4.
    Burczyński, T., Stochastic boundary element method for wave propagation through continuous random media. BETECH’86-MIT, ed. J. J., Connor & C.A.Brebbia, CMP, Southampton, 1986, pp.733–741.Google Scholar
  5. 5.
    Burczyński, T., The boundary element procedure for dependence of eigenvalues with respect to stochastic shape of elastic systems. Proc. 25th Symp. on Modelling in Mechanics - PTMTS, Vol.2, Gliwice-Kudowa, 1986, 235–238.Google Scholar
  6. 6.
    Burczyński, T., The boundary element method in stochastic problems of elasticity. Mechanics & Computer, 7 (1988) 125–147 (in Polish)zbMATHGoogle Scholar
  7. 7.
    Burczyński, T., Boundary element method for deterministic and stochastic shape design sensitivity analysis. Advanced Boundary Element Methods, ed. T. A., Cruse, Springer-Verlag, Berlin, 1988, pp.73–80.CrossRefGoogle Scholar
  8. 8.
    Burczyński, T., The Boundary Element Method for Stochastic Analysis Problems. Chapter in The Boundary Element Method for Selected Analysis and Optimization Problems of Deformable Bodies, T. Burczyński, Silesian Tech. Univ. Publications, Gliwice, 1989, pp.94–124 (in Polish).Google Scholar
  9. 9.
    Burczyński, T., Shape sensitivity analysis of uncertain static and vibrating systems using stochastic boundary elements. Boundary Element Methods - Fundamentals and Applications, ed. S.Kobayashi & N.Nishimura, Springer-Verlag, Berlin, 1992, pp.49–58.Google Scholar
  10. 10.
    Burczyński, T., Stochastic Boundary Element Methods. Chapter in Advances in Boundary Element Techniques, ed. J.H.Kane, G.Maier, N.Tosaka & S.N.Atluri, Springer-Verlag, Berlin, 1993, pp.30–54.Google Scholar
  11. 11.
    Burczyński, T., Stochastic Boundary Elements to Analysis, Shape Design Sensitivity and Identification Problems. Chapter in Computational Stochastic Mechanics, ed. A.H-D.Cheng & C.Y.Yang, CMP, Southampton, Elsevier Applied Science, London, 1993, pp.569–593.Google Scholar
  12. 12.
    Burczyński, T., Stochastic Boundary Element Approach to Shape Design Sensitivity Analysis. Chapter in Design Sensitivity Analysis, ed. T.Hisada & M.Kleiber, Atlanta Technology Publications, Atlanta, 1993, pp.68–92.Google Scholar
  13. 13.
    Burczyński, T. & John, A., Stochastic dynamic analysis of elastic and viscoelastic systems by means of the boundary element method. Boundary Elements VII, ed. C.A.Brebbia & G.Maier, Springer- Verlag, Berlin, Vol.1, 1985, pp.6\53–6\61.Google Scholar
  14. 14.
    Burczyński, T. & John, A., The stochastic boundary integral equation method for random vibrations of continuous media. Opole Technical University Publications, Opole, No. 109, 1985, pp.61–74.Google Scholar
  15. 15.
    Burczyński, T. & John, A., Application of the stochastic boundary element method to analysis of elastic and viscoelastic structures. Proc. X Polish Conf. Computer Methods in Mechanics, Świnoujście, 1991, pp.47–54.Google Scholar
  16. 16.
    Burczyński, T. & Polch, E.Z., Sensitivity analysis of cracks using boundary and path-independent integrals. Proc. International Symposium on Boundary Element Methods, Technical University of Braunschweig, Germany, 16–19 August, 1993.Google Scholar
  17. 17.
    Cheng, A.H-D. & Lafe, O.E., Boundary element solution for stochastic groundwater flow: random boundary condition and recharge. Water Resources, 27 (1991) 231–242.CrossRefGoogle Scholar
  18. 18.
    Dems, K. & Mróz, Z., On a class of conservation rules associated with sensitivity analysis in linear elasticity. Int. J. Solids Structures, 22 (1986) 737–758.zbMATHCrossRefGoogle Scholar
  19. 19.
    Drewniak, J., Boundary elements for random heat conduction problems. Engineering Analysis, 2 (1985) 168–170.CrossRefGoogle Scholar
  20. 20.
    Ettouney, M., Benaroya, H. & Wright, J., Probabilistic Boundary Element Methods. Chapter in Computational Mechanics of Probabilistic and Reliability Analysis, ed. W.K.Liu & T.Belytschko, Elmepress Int., Lausanne, 1989, pp. 142–165.Google Scholar
  21. 21.
    Ettouney, M.M., Daddazio, R.P. & Abboud, N.N., Probabilistic Boundary Element Method in Soil Dynamics. Chapter in Computational Stochastic Mechanics, ed. A.H-D.Cheng & C.Y.Yang, CMP, Southampton, Elsevier Applied Science, London, 1993, pp.623–641.Google Scholar
  22. 22.
    Ghanem, R.G. & Spanos, P.D., Stochastic Finite Elements: A Spectral Approach. Springer-Verlag, Berlin, 1991.zbMATHCrossRefGoogle Scholar
  23. 23.
    Lafe, O. & Cheng, A.H-D., Stochastic Indirect Boundary Element Method. Chapter in Computational Stochastic Mechanics, ed. A.H- D.Cheng & C.Y.Yang, CMP, Southampton, Elsevier Applied Science, London, 1993, pp.301–319.Google Scholar
  24. 24.
    Kleiber, M. & Hien, T.D., The Stochastic Finite Element Method. Wiley, Chichester, 1992.zbMATHGoogle Scholar
  25. 25.
    Manolis, G.D., Acoustic and Seismic Wave Propagation in Random Media. Chapter in Computational Stochastic Mechanics, ed. A.H- D.Cheng & C.Y.Yang, CMP, Southampton, Elsevier Applied Science, London, 1993, pp.585–622.Google Scholar
  26. 26.
    Mróz, Z., Variational Approach to Shape Sensitivity Analysis and Optimal Design. Chapter in The Optimum Shape, ed. J.SA.Bennet & M.E.Botkin, Plenum Press, New York, 1986, pp.79–110.Google Scholar
  27. 27.
    Nakagiri, S., Suzuki, K. & Hisada, T., Stochastic boundary element method applied to stress analysis. Boundary Elements V, ed. C.A.Brebbia, T.Futugami & M.Tanaka, Springer-Verlag, Berlin, 1983, pp.439–448.Google Scholar
  28. 28.
    Nakagiri, S. & Suzuki, K., Indeterminate shape modification for stress reduction based on boundary element sensitivity analysis. Computer Aided Optimum Design of Structures: Recent Advances, ed. C.A.Brebbia & S.Hernandez, CMP, Southampton, Springer-Verlag, Berlin, 1989, pp.85–94.Google Scholar
  29. 29.
    Sobczyk, K., Stochastic Wave Propagation. PWN, Warsaw, Elsevier, Amsterdam, 1984.Google Scholar
  30. 30.
    Spanos, P.D. & Ghanem, R., Boundary element formulation for random vibration problems. J. Engng. Mech. ASCE, 117 (1991) 409–423.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1994

Authors and Affiliations

  • Tadeusz Burczyński
    • 1
  1. 1.Department of Engineering MechanicsSilesian Technical UniversityGliwicePoland

Personalised recommendations