Skip to main content
  • 261 Accesses

Abstract

Maximum likelihood points play a predominant role in structural reliability computation. The point of maximum likelihood (or the failure point) is the solution of a nonlinear mathematical programming problem with a nonlinear equality constraint (NEP). Sequential quadratic programming (SQP) is regarded as one of the best procedures to solve an NEP1, 2. The different computational strategies on which the SQP method is based are described. Second-order reliability analysis methods need second-order derivative information of the likelihood and the limit state surface at the optimal point. An optimization-based algorithm for the calculation of the reduced Hessian of the Lagrangian is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.E. Gill, W. Murray, and M.H. Wright. Practical Optimization. Academic Press, New York, USA, 1981.

    MATH  Google Scholar 

  2. D.G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, Reading, Massachusetts, USA, second edition, 1984.

    MATH  Google Scholar 

  3. K. Breitung. Probability approximations by loglikelihood maximization. Journal of Engineering Mechanics, ASCE, 117(3):457–477, 1991.

    Article  Google Scholar 

  4. K. Breitung. Asymptotic approximation for multinormal integrals.Journal of Engineering Mechanics, ASCE, 110(3):357–366, 1984.

    Article  Google Scholar 

  5. M.A. Maes, K. Breitung, and D.J. Dupuis. Asymptotic importance sampling. Structural Safety, 12:167–186, 1993.

    Article  Google Scholar 

  6. Ph. Geyskens. Optimization and Quadrature Algorithms for Structural Reliability Analaysis in the Original Variable Domain. PhD thesis, Department of Civil Engineering, Katholieke Universiteit Leuven, Leuven, Belgium, 1993.

    Google Scholar 

  7. M. Shinozuka. Basic analysis of structural safety. Journal of Structural Engineering, ASCE, 109(3):721–740, 1983.

    Article  Google Scholar 

  8. M. Hohenbichler and R. Rackwitz. Non-normal dependent vectors in structural safety. Journal of the Engineering Mechanics Division, ASCE, 107(6):1227–1238, 1981.

    Google Scholar 

  9. W. Murray. Linear algebra and optimization. Lecture Notes, Stanford University, Stanford, CA, 1993.

    Google Scholar 

  10. A.M. Hasofer and N.C. Lind. Exact and invariant second-moment code format. Journal of the Engineering Mechanics Division, ASCE 100(1):111–121, 1974.

    Google Scholar 

  11. R. Rackwitz and B. Fiefiler. Structural reliability under combined random load sequences. Computers & Structures, 9:489–494, 1978.

    Article  MATH  Google Scholar 

  12. A. Der Kiureghian and M. De Stefano. Efficient algorithm for second-order reliability analysis. Journal of Engineering Mechanics, ASCE, 117(12):2904–2923, 1991.

    Article  Google Scholar 

  13. P-L. Liu and A. Der Kiureghian. Optimization algorithms for structural reliability analysis. Technical Report UCB/SEMM-86/09, Department of Civil Engineering, University of California at Berkeley, Berkeley, California, USA, 1986.

    Google Scholar 

  14. P-L. Liu and A. Der Kiureghian. Optimization algorithms for structural reliability. Structural Safety, 9(3):161–177, 1991.

    Article  Google Scholar 

  15. T. Abdo and R. Rackwitz. A new beta-points algorithm for large time-invariant and time-variant reliability problems. In A. A. Der Kiureghian and P. Thoft-Christensen, editors, Reliability and Optimization of Structural Systems ’90, Proceedings of the 3rd IFIP WG7.5 Conference, Berkeley, CA, pages 1–11, Berlin, Germany, 1990. Springer-Verlag.

    Google Scholar 

  16. P.E. Gill and W. Murray. Numerically stable methods for quadratic programming. Mathematical Programming, 14:349–372, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  17. G.H. Golub and C.F. Van Loan. Matrix Computations. The John Hopkins University Press, Baltimore, Maryland, USA, second edition, 1989.

    MATH  Google Scholar 

  18. J.E. Dennis and J.J. Moré. Quasi-newton methods, motivation and theory. SIAM Review, 19(l):46–89, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  19. M.J.D. Powell. The Convergence of Variable Metric Methods for Nonlinearly Constrained Optimization Problems, pages 27–63. Academic Press, New York, USA, 1978.

    Google Scholar 

  20. L.C.W. Dixon. The Choice of Step Length, a Crucial Factor in the Performance of Variable Metric Algorithms, chapter 10, pages 149–170. Academic Press, London, UK, 1972.

    Google Scholar 

  21. K. Schittkowski. The nonlinear programming method of wilson, han and powell with an augmented lagrangian type line search function - part i: Convergence analysis. Numerische Mathematic, 38:83–114, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Schittkowski. On the convergence of a sequential quadratic programming method with an augmented lagrangian line search function. Mathematische Operationsforschung und Statistic, series Optimization, 14(2): 197–216, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  23. R.P. Brent. Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1973.

    MATH  Google Scholar 

  24. D.P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York, USA, 1982.

    MATH  Google Scholar 

  25. P.T. Boggs, J.W. Tolle, and P. Wang. On the local convergence of quasi-new ton methods for constrained optimization. SIAM Journal of Control and Optimization, 20(2):161–171, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  26. P.T. Boggs and J.W. Tolle. Convergence propoerties of a class of rank-two updates. Technical Report UNC/OR TR-90/16, Department of Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, 1992.

    Google Scholar 

  27. M.R. Hestenes. Conjugate Directions Methods in Optimization. Springer-Verlag, New York, USA, 1980.

    Google Scholar 

  28. T. Igusa and A. Der Kiureghian. Dynamic characterization of two-degree-of-freedom equipment-structure systems. Journal of Engineering Mechanics, ASCE, 111(1):1–19, 1985.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Geyskens, P. (1994). Structural Reliability Optimization. In: Spanos, P.D., Wu, YT. (eds) Probabilistic Structural Mechanics: Advances in Structural Reliability Methods. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85092-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85092-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85094-3

  • Online ISBN: 978-3-642-85092-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics